典型文献
P2构型PHEV模型预测能量管理策略研究
文献摘要:
基于规则的插电式混合动力系统能量管理策略难以实现全局最优,全局优化策略则存在未来功率需求难以获取及无法实时求解等问题.预测能量管理策略通过对未来一段时间内车辆功率需求进行预测,进而在预测时段内采用全局优化算法,从而在保证算法实时性的同时取得接近全局优化的控制效果.车速预测算法是预测能量管理策略的核心和关键,采用适应能力强、计算速度快的径向基神经网络对车辆功率需求进行预测,以提高车速预测的准确性.以P2构型插电式混合动力系统为研究对象,将模型预测控制与动态规划结合,以发动机油耗最小为优化目标对车速预测时域内最优发动机转矩序列进行求解.建立系统仿真模型,对基于规则的能量管理策略和预测能量管理策略进行对比.结果表明:与基于规则的策略相比,在8个NEDC工况下,基于径向基神经网络的预测能量管理策略能耗降低13.8%.
文献关键词:
PHEV;预测控制;车速预测;径向基神经网络;动态规划
中图分类号:
作者姓名:
罗勇;赵爽;庞维;黄欢
作者机构:
重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054
文献出处:
引用格式:
[1]罗勇;赵爽;庞维;黄欢-.P2构型PHEV模型预测能量管理策略研究)[J].重庆理工大学学报,2022(01):12-19
A类:
B类:
P2,PHEV,能量管理策略,基于规则,插电式混合动力,混合动力系统,系统能量,难以实现,全局最优,全局优化,功率需求,预测时段,车速预测,预测算法,计算速度,径向基神经网络,高车,模型预测控制,动态规划,发动机油,机油耗,优化目标,预测时域,转矩,建立系统,系统仿真,NEDC
AB值:
0.267358
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。