典型文献
融合工况识别的增程式电动汽车模糊能量管理策略研究
文献摘要:
针对模糊能量管理策略设计仅依赖专家经验很难适应复杂工况的问题,本研究提出了一种基于神经网络工况识别的增程式电动汽车模糊能量管理策略.首先,基于中国货车行驶工况(CHTC-HT)数据,利用改进遗传算法优化的BP神经网络构建工况识别模型;其次,根据所识别的工况类型,融合电池SOC及整车需求功率参数,设计了自适应模糊能量管理策略,通过实时获取发动机功率输出实现能量优化分配;最后,通过硬件在环测试验证了所提出的方法.结果表明自适应模糊策略油耗相比规则策略降低9.67%,比模糊策略降低7.84%,有效提高了整车经济性.
文献关键词:
增程式电动汽车;模糊能量管理策略;神经网络算法;改进遗传算法;硬件在环
中图分类号:
作者姓名:
陈勇;魏长银;李晓宇;李彦林;刘彩霞;林霄喆
作者机构:
河北工业大学机械工程学院,天津市新能源汽车动力传动与安全技术重点实验室,天津 300130;吉利汽车动力总成研究院,宁波 471002
文献出处:
引用格式:
[1]陈勇;魏长银;李晓宇;李彦林;刘彩霞;林霄喆-.融合工况识别的增程式电动汽车模糊能量管理策略研究)[J].汽车工程,2022(04):514-524,600
A类:
模糊能量管理策略
B类:
工况识别,增程式电动汽车,车模,策略设计,专家经验,复杂工况,国货,货车,车行,行驶工况,CHTC,改进遗传算法,遗传算法优化,网络构建,识别模型,SOC,自适应模糊,发动机功率,功率输出,能量优化,优化分配,过硬,硬件在环测试,测试验证,模糊策略,油耗,整车经济性,神经网络算法
AB值:
0.272778
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。