典型文献
基于BP神经网络EPS系统控制策略研究
文献摘要:
助力特性曲线是反映转向轻便性和路感强度的重要特性,对于目标车型进行电动助力转向系统的开发,需要设计符合目标车型状态变化的助力特性曲线,通过确定车速感应系数,设计出了目标车型的曲线型助力特性曲线,并采用基于BP神经网络的PID自适应控制,通过神经网络的自身学习和加权系数调整,实现参数自整定,避免了传统PID参数整定的繁琐.最后针对设计的曲线型助力特性曲线和BP神经网络的控制策略,进行仿真试验.结果表明:BP神经网络控制策略能够实现对曲线型助力特性曲线的目标电流进行实时跟随,而且比传统PID控制策略具有较高的稳定性,提高了系统的鲁棒性,对汽车电动助力转向控制器的开发具有重要意义.
文献关键词:
电动助力转向;助力特性曲线;BP神经网络;鲁棒性
中图分类号:
作者姓名:
商显赫;林幕义;陈勇;马彬
作者机构:
北京信息科技大学机电工程学院,北京100192;北京电动车辆协同创新中心,北京100192
文献出处:
引用格式:
[1]商显赫;林幕义;陈勇;马彬-.基于BP神经网络EPS系统控制策略研究)[J].机械设计与制造,2022(03):36-40
A类:
助力特性曲线
B类:
EPS,系统控制,控制策略研究,轻便,重要特性,车型,电动助力转向系统,状态变化,车速,线型,PID,自适应控制,加权系数,参数自整定,参数整定,仿真试验,神经网络控制,流进,实时跟随,略具,转向控制器
AB值:
0.212366
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。