首站-论文投稿智能助手
典型文献
基于深度学习考虑出行模式的电动汽车充电负荷场景生成
文献摘要:
随着电动汽车的快速普及,交通网与电网的耦合进一步加深,交通网出行模式将对电动汽车充电负荷产生显著影响.传统的充电负荷模拟方法依赖于对交通路网和电动汽车个体建模并有较强的假设.文中提出了一种基于数据驱动的卷积自编码器和条件对抗生成网络的电动汽车充电负荷场景生成方法.该方法首先采用基于无监督学习的卷积自编码器对交通网出行预测数据降维并自适应地抽取出特征信息.其次,设计了一种适用于日前交通网充电负荷场景生成的条件生成对抗网络,并利用卷积自编码器抽取出的特征信息,隐式地学习得到不同交通网出行模式对应的电动汽车充电负荷条件概率分布,从而实现日前的电动汽车充电负荷场景生成,为电网运行与充电站运营提供了支撑.最后,以实际城市路网为例验证了所提出充电负荷场景生成方法的有效性.
文献关键词:
电动汽车;充电负荷;交通网;深度学习;数据驱动;卷积自编码器;条件对抗生成网络
作者姓名:
钱涛;任孟极;邵成成;朱丹丹;周前;王秀丽
作者机构:
西安交通大学电气工程学院,陕西省西安市 710049;国网江苏省电力有限公司电力科学研究院,江苏省南京市 211103
文献出处:
引用格式:
[1]钱涛;任孟极;邵成成;朱丹丹;周前;王秀丽-.基于深度学习考虑出行模式的电动汽车充电负荷场景生成)[J].电力系统自动化,2022(12):67-75
A类:
B类:
出行模式,电动汽车充电负荷,场景生成,交通网,负荷模拟,交通路网,卷积自编码器,条件对抗生成网络,生成方法,无监督学习,出行预测,预测数据,数据降维,特征信息,日前,条件生成对抗网络,隐式,地学,习得,条件概率分布,电网运行,充电站运营,城市路网
AB值:
0.164965
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。