典型文献
基于深度学习的水面无人艇目标检测算法综述
文献摘要:
随着人工智能的发展,水面无人艇可代替人工进行危险任务作业,目标检测是其完成自主探测的核心技术.深度学习技术克服了人工特征提取精度低、通用性差等局限性,已成为图像处理的主流方法.首先,对当前基于深度学习的目标检测算法的发展现状进行了全面总结,对算法分类进行了详细的定义,并指出了不同类型算法的优缺点及适用场景;然后,分析了无人艇水面目标检测技术的研究现状,指出了各类深度学习工作的贡献、优势和局限性;最后,总结了面向水面无人艇的深度学习目标检测算法中亟需解决的关键科学问题,并对可行的方案以及该应用研究领域的未来发展做了进一步的展望.
文献关键词:
水面无人艇;图像处理;目标检测;深度学习
中图分类号:
作者姓名:
罗逸豪;孙创;邵成;张钧陶
作者机构:
中国船舶集团有限公司第七一〇研究所,湖北 宜昌 443003;清江创新中心,湖北 武汉 430076;军事科学院系统工程研究院,北京 100141
文献出处:
引用格式:
[1]罗逸豪;孙创;邵成;张钧陶-.基于深度学习的水面无人艇目标检测算法综述)[J].数字海洋与水下攻防,2022(06):524-538
A类:
B类:
水面无人艇,目标检测算法,代替人工,工进,深度学习技术,通用性,主流方法,算法分类,适用场景,面目标,学习目标,关键科学问题
AB值:
0.19439
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。