典型文献
基于握力分布的驾驶人人机共驾状态识别研究
文献摘要:
人机共驾是现阶段汽车智能化发展的必经之路,在人机共驾中为了避免人机冲突,对驾驶人的人机共驾状态进行识别是实现和谐人机共驾的基础.然而现有研究较少考虑了该状态,同时相关识别方法多基于驾驶人生理信息,导致应用繁琐,不具备实用性.为此,设计了一种能够测量握力分布的智能方向盘系统硬件架构,并在此基础上开发了基于握力分布的驾驶人人机共驾状态识别方法.首先搭建了能够测量驾驶人双手握力分布的智能方向盘系统,在此基础上利用驾驶人在环试验台采集了 15名驾驶人在不同人机共驾状态下的试验数据;然后根据试验数据通过递推最小二乘法对驾驶人的上肢肌肉阻抗特性参数进行了辨识,分析了不同状态下的驾驶人上肢肌肉特性;最后基于门控循环单元(Gated Recurrent Unit,GRU)构建了 Hybrid-GRU(H-GRU)模型,将回归任务与分类任务混合,利用辨识得到的肌肉阻抗特性结果对模型中的回归部分进行预先训练,使模型具备了一定的先验知识,实现了从驾驶人握力分布到人机共驾状态的映射,并将H-GRU模型与常规GRU模型和支持向量机模型进行对比测试.结果表明:所建立的模型总体分类准确率达到97.59%,相比常规GRU模型和支持向量机模型分别提升6.97%和33.02%.所提出的基于方向盘握力分布的人机共驾状态识别方法不仅能够准确辨识驾驶人人机共驾状态,还能够输出驾驶人肌肉阻抗特性参数,可为驾驶人建模或人机共驾策略开发等提供帮助.
文献关键词:
汽车工程;人机共驾;GRU神经网络;驾驶人状态;握力分布;驾驶人肌肉阻抗;递推最小二乘法
中图分类号:
作者姓名:
韩嘉懿;朱冰;赵健;马驰
作者机构:
吉林大学汽车仿真与控制国家重点实验室,吉林 长春 130022
文献出处:
引用格式:
[1]韩嘉懿;朱冰;赵健;马驰-.基于握力分布的驾驶人人机共驾状态识别研究)[J].中国公路学报,2022(03):166-176
A类:
握力分布,驾驶人肌肉阻抗
B类:
人机共驾,状态识别,汽车智能化,智能化发展,必经之路,人机冲突,方向盘,系统硬件,硬件架构,双手,手握力,试验台,数据通,递推最小二乘法,上肢,阻抗特性,特性参数,门控循环单元,Gated,Recurrent,Unit,GRU,Hybrid,分类任务,识得,归部,先验知识,支持向量机模型,对比测试,分类准确率,策略开发,汽车工程,驾驶人状态
AB值:
0.213334
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。