首站-论文投稿智能助手
典型文献
Graphene-driving strain engineering to enable strain-free epitaxy of AIN film for deep ultraviolet light-emitting diode
文献摘要:
The energy-efficient deep ultraviolet(DUV)optoelectronic devices suffer from critical issues associated with the poor quality and large strain of nitride material system caused by the inherent mismatch of heteroepitaxy.In this work,we have prepared the strain-free AIN film with low dislocation density(DD)by graphene(Gr)-driving strain-pre-store engineering and a unique mechanism of strain-relaxation in quasi-van der Waals(QvdW)epitaxy is presented.The DD in AIN epilayer with Gr exhibits an anomalous sawtooth-like evolution during the whole epitaxy process.Gr can help to enable the annihilation of the dislocations originated from the interface between AIN and Gr/sapphire by impelling a lateral two-dimensional growth mode.Remarkably,it can induce AIN epilayer to pre-store sufficient tensile strain during the early growth stage and thus compensate the compressive strain caused by hetero-mismatch.Therefore,the low-strain state of the DUV light-emitting diode(DUV-LED)epitaxial structure is realized on the strain-free AIN template with Gr.Furthermore,the DUV-LED with Gr demonstrate 2.1 times enhancement of light output power and a better stability of luminous wavelength compared to that on bare sapphire.An in-depth understanding of this work reveals diverse beneficial impacts of Gr on nitride growth and provides a novel strategy of relaxing the vital requirements of hetero-mismatch in conventional heteroepitaxy.
文献关键词:
作者姓名:
Hongliang Chang;Zhetong Liu;Shenyuan Yang;Yaqi Gao;Jingyuan Shan;Bingyao Liu;Jingyu Sun;Zhaolong Chen;Jianchang Yan;Zhiqiang Liu;Junxi Wang;Peng Gao;Jinmin Li;Zhongfan Liu;Tongbo Wei
作者机构:
Research and Development Center for Semiconductor Lighting Technology,Institute of Semiconductors,Chinese Academy of Sciences,100083 Beijing,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;Center for Nanochemistry(CNC),Beijing Science and Engineering Center for Nanocarbons,Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,100871 Beijing,China;Electron Microscopy Laboratory,and International Center for Quantum Materials,School of Physics,Peking University,100871 Beijing,China;Beijing graphene institute(BGI),100095 Beijing,China;Academy for Advanced Interdisciplinary Studies,Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials,Peking University,100871 Beijing,China;State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,100083 Beijing,China
引用格式:
[1]Hongliang Chang;Zhetong Liu;Shenyuan Yang;Yaqi Gao;Jingyuan Shan;Bingyao Liu;Jingyu Sun;Zhaolong Chen;Jianchang Yan;Zhiqiang Liu;Junxi Wang;Peng Gao;Jinmin Li;Zhongfan Liu;Tongbo Wei-.Graphene-driving strain engineering to enable strain-free epitaxy of AIN film for deep ultraviolet light-emitting diode)[J].光:科学与应用(英文版),2022(05):808-819
A类:
heteroepitaxy,QvdW,impelling
B类:
Graphene,driving,strain,engineering,enable,free,AIN,film,deep,ultraviolet,light,emitting,diode,energy,efficient,DUV,optoelectronic,devices,suffer,from,critical,issues,associated,poor,quality,large,nitride,material,system,caused,by,inherent,mismatch,In,this,work,have,prepared,low,density,DD,graphene,store,unique,mechanism,relaxation,quasi,van,Waals,presented,epilayer,exhibits,anomalous,sawtooth,like,evolution,during,whole,process,can,help,annihilation,dislocations,originated,interface,between,sapphire,lateral,two,dimensional,growth,mode,Remarkably,induce,sufficient,tensile,early,stage,thus,compensate,compressive,Therefore,state,LED,epitaxial,structure,realized,template,Furthermore,demonstrate,times,enhancement,output,power,better,stability,luminous,wavelength,compared,that,bare,An,depth,understanding,reveals,diverse,beneficial,impacts,provides,novel,strategy,relaxing,vital,requirements,conventional
AB值:
0.517727
相似文献
Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu;Yimeng Song;Zhaole Su;Haiqiang Jia;Wenxin Wang;Yang Jiang;Yangfeng Li;Hong Chen-Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;School of Mathematics and Physics,Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science,University of Science and Technology Beijing,Beijing 100083,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
Cr3+/Y3+co-doped persistent luminescence nanoparticles with biological window activation for in vivo repeatable imaging
Huimin Jiang;Lin Liu;Kexin Yu;Xianggui Yin;Shenghui Zheng;Liang Song;Junpeng Shi;Yun Zhang-College of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China;Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China;Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials,Xiamen Institute of Rare Earth Materials,Haixi Institute,Chinese Academy of Sciences,Xiamen 361021,China;Institute of Urban Environment,Chinese Academy of Sciences,Xiamen 361021,China;Ganjiang Innovation Academy,Chinese Academy of Sciences,Ganzhou 341000,China
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials
Zijun He;Zheng Qi;Huichao Liu;Kangyan Wang;Leslie Roberts;Jefferson Z.Liu;Yilun Liu;Stephen J.Wang;Mark J.Cook;George P.Simon;Ling Qiu;Dan Li-Department of Chemical Engineering,The University of Melbourne,Melbourne 3010,Australia;Department of Materials Science and Engineering,Monash University,Melbourne 3800,Australia;Department of Chemical Engineering,Monash University,Melbourne 3800,Australia;State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Neurophysiology Department,Department of Neurology and Neurological Research,St Vincent's Hospital,Melbourne 3065,Australia;Department of Medicine,St.Vincent's Hospital,University of Melbourne,Melbourne 3010,Australia;Department of Mechanical Engineering,University of Melbourne,Melbourne 3010,Australia;Department of Design,Monash University,Melbourne 3145,Australia;School of Design,The Hong Kong Polytechnic University,Hong Kong 999077,China;Shenzhen Geim Graphene Center,Tsinghua-Berkeley Shenzhen Institute,Tsinghua University,Shenzhen 518055,China
Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators
Jingyuan Shan;Sunmiao Fang;Wendong Wang;Wen Zhao;Rui Zhang;Bingzhi Liu;Li Lin;Bei Jiang;Haina Ci;Ruojuan Liu;Wen Wang;Xiaoqin Yang;Wenyue Guo;Mark H.Rümmeli;Wanlin Guo;Jingyu Sun;Zhongfan Liu-Center for Nanochemistry(CNC),Beijing Science and Engineering Center for Nanocarbons,Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China;Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China;Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education,State Key Laboratory of Mechanics and Control of Mechanical Structures,Institute of Nanoscience,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Department of Physics and Astronomy,University of Manchester,Manchester M13 9PL,UK;Schoool of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China;College of Energy,Soochow Institute for Energy and Materials Innovations(SIEMIS),Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Soochow University,Suzhou 215006,China;Beijing Graphene Institute(BGI)Beijing 100095,China;School of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China
Surface ligand modified cesium lead bromide/silica sphere composites for low-threshold upconversion lasing
QIAN XIONG;SIHAO HUANG;ZIJUN ZHAN;JUAN DU;XIAOSHENG TANG;ZHIPING HU;ZHENGZHENG LIU;ZEYU ZHANG;WEIWEI CHEN;YUXIN LENG-State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics(SIOM),Chinese Academy of Sciences(CAS),Shanghai 201800,China;Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China;School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;School of Physics and Electronics,Shandong Normal University,Jinan 250014,China;College of Optoelectronic Engineering,Chongqing University of Post and Telecommunications,Chongqing 400065,China
Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution
Kailang Liu;Xiang Chen;Penglai Gong;Ruohan Yu;Jinsong Wu;Liang Li;Wei Han;Sanjun Yang;Chendong Zhang;Jinghao Deng;Aoju Li;Qingfu Zhang;Fuwei Zhuge;Tianyou Zhai-State Key Laboratory of Materials Processing and Die & Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Nanostructure Research Center,Wuhan University of Technology,Wuhan 430070,China;Institutes of Physical Science and Information Technology,Anhui University,Hefei 231699,China;School of Physics and Technology,Wuhan University,Wuhan 430072,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。