首站-论文投稿智能助手
典型文献
Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators
文献摘要:
Direct synthesis of high-quality graphene on dielectric substrates without a transfer process is of vital importance for a variety of applications.Current strategies for boosting high-quality graphene growth,such as remote metal catalyzation,are limited by poor performance with respect to the release of metal catalysts and hence suffer from a problem with metal residues.Herein,we report an effective approach that utilizes a metal-containing species,copper acetate,to continuously supply copper clusters in a gaseous form to aid transfer-free growth of graphene over a wafer scale.The thus-derived graphene films were found to show reduced multilayer density and improved electrical performance and exhibited a carrier mobility of 8500 cm2 V-1 s-1.Furthermore,droplet-based hydrovoltaic electricity generator devices based on directly grown graphene were found to exhibit robust voltage output and long cyclic stability,in stark contrast to their counterparts based on transferred graphene,demonstrating the potential for emerging energy harvesting applications.The work presented here offers a promising solution to organize the metal catalytic booster toward transfer-free synthesis of high-quality graphene and enable smart energy generation.
文献关键词:
作者姓名:
Jingyuan Shan;Sunmiao Fang;Wendong Wang;Wen Zhao;Rui Zhang;Bingzhi Liu;Li Lin;Bei Jiang;Haina Ci;Ruojuan Liu;Wen Wang;Xiaoqin Yang;Wenyue Guo;Mark H.Rümmeli;Wanlin Guo;Jingyu Sun;Zhongfan Liu
作者机构:
Center for Nanochemistry(CNC),Beijing Science and Engineering Center for Nanocarbons,Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China;Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China;Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education,State Key Laboratory of Mechanics and Control of Mechanical Structures,Institute of Nanoscience,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Department of Physics and Astronomy,University of Manchester,Manchester M13 9PL,UK;Schoool of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China;College of Energy,Soochow Institute for Energy and Materials Innovations(SIEMIS),Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Soochow University,Suzhou 215006,China;Beijing Graphene Institute(BGI)Beijing 100095,China;School of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China
引用格式:
[1]Jingyuan Shan;Sunmiao Fang;Wendong Wang;Wen Zhao;Rui Zhang;Bingzhi Liu;Li Lin;Bei Jiang;Haina Ci;Ruojuan Liu;Wen Wang;Xiaoqin Yang;Wenyue Guo;Mark H.Rümmeli;Wanlin Guo;Jingyu Sun;Zhongfan Liu-.Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators)[J].国家科学评论(英文版),2022(07):64-72
A类:
hydrovoltaic,catalyzation
B类:
Copper,acetate,facilitated,free,growth,high,quality,graphene,generators,Direct,synthesis,dielectric,substrates,without,process,vital,importance,variety,applications,Current,strategies,boosting,such,remote,metal,are,limited,by,poor,performance,respect,release,catalysts,hence,suffer,from,problem,residues,Herein,report,effective,approach,that,utilizes,containing,species,copper,continuously,supply,clusters,gaseous,aid,over,wafer,scale,thus,derived,films,were,found,show,reduced,multilayer,density,improved,electrical,exhibited,carrier,mobility,Furthermore,droplet,electricity,devices,directly,grown,robust,voltage,output,long,cyclic,stability,stark,contrast,their,counterparts,transferred,demonstrating,potential,emerging,energy,harvesting,work,presented,here,offers,promising,solution,organize,catalytic,booster,toward,enable,smart,generation
AB值:
0.632605
相似文献
Graphene-driving strain engineering to enable strain-free epitaxy of AIN film for deep ultraviolet light-emitting diode
Hongliang Chang;Zhetong Liu;Shenyuan Yang;Yaqi Gao;Jingyuan Shan;Bingyao Liu;Jingyu Sun;Zhaolong Chen;Jianchang Yan;Zhiqiang Liu;Junxi Wang;Peng Gao;Jinmin Li;Zhongfan Liu;Tongbo Wei-Research and Development Center for Semiconductor Lighting Technology,Institute of Semiconductors,Chinese Academy of Sciences,100083 Beijing,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;Center for Nanochemistry(CNC),Beijing Science and Engineering Center for Nanocarbons,Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,100871 Beijing,China;Electron Microscopy Laboratory,and International Center for Quantum Materials,School of Physics,Peking University,100871 Beijing,China;Beijing graphene institute(BGI),100095 Beijing,China;Academy for Advanced Interdisciplinary Studies,Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials,Peking University,100871 Beijing,China;State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,100083 Beijing,China
Monoclinic Cu3(OH)2V2O7·2H2O nanobelts/reduced graphene oxide:A novel high-capacity and long-life composite for potassium-ion battery anodes
Liming Ling;Xiwen Wang;Yu Li;Chenxiao Lin;Dong Xie;Min Zhang;Yan Zhang;Jinjia Wei;Huajie Xu;Faliang Cheng;Chuan Wu;Shiguo Zhang-Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan 523808,Guangdong,China;College of Materials Science and Engineering,Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Hunan University,Changsha 410082,Hunan,China;School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China;Beijing Key Laboratory of Environmental Science and Engineering,School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Materials Processing and Mold,Ministry of Education,Zhengzhou University,Zhengzhou 450002,Henan,China
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
Emad S.Goda;Bidhan Pandit;Sang Eun Hong;Bal Sydulu Singu;Seong K.Kim;Essam B.Moustafa;Kuk Ro Yoon-Organic Nanomaterials Lab,Department of Chemistry,Hannam University,Daejeon 34054,Republic of Korea;Gas Analysis and Fire Safety Laboratory,Chemistry Division,National Institute for Standards,136,Giza 12211,Egypt;Department of Materials Science and Engineering and Chemical Engineering,Universidad Carlos Ⅲ de Madrid,Avenida de La Universidad 30,28911 Leganés,Madrid,Spain;Department of Chemical and Biomolecular Engineering,Yonsei University,Seoul 03722,Republic of Korea;Department of Chemical Engineering,Hannam University,1646 Yuseongdae-ro,Yuseong-gu,Daejeon 34054,Republic of Korea;Mechanical Engineering Department,Faculty of Engineering,King Abdulaziz University,P.O.Box 80204,Jeddah 22254,Saudi Arabia
Interface-engineered MoS2/CoS/NF bifunctional catalysts for highly-efficient water electrolysis
Wenxia Chen;Xingwang Zhu;Rui Wang;Wei Wei;Meng Liu;Shuai Dong;Kostya Ken Ostrikov;Shuang-Quan Zang-School of Chemistry and Chemical Engineering,Henan Key Laboratory of Biomolecular Recognition and Sensing,Henan D&A Engineering Center of Advanced Battery Materials,Shangqiu Normal University,Shangqiu 476000,Henan,China;College of Environmental Science and Engineering,Yangzhou University,Yangzhou 225009,Jiangsu,China;Henan Key Laboratory of Crystalline Molecular Functional Materials,Henan International Joint Laboratory of Tumor Theranostical Cluster Materials,Green Catalysis Center and College of Chemistry,Zhengzhou University,Zhengzhou 450001,Henan,China;School of Chemistry and Physics and Centre for Materials Science,Queensland University of Technology(QUT),Brisbane,QLD 4000,Australia
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。