首站-论文投稿智能助手
典型文献
Surface ligand modified cesium lead bromide/silica sphere composites for low-threshold upconversion lasing
文献摘要:
In recent years,all-inorganic halide perovskite quantum dots(QDs)have drawn attention as promising candi-dates for photodetectors,light-emitting diodes,and lasing applications.However,the sensitivity and instability of perovskite to moisture and heat seriously restrict their practical application to optoelectronic devices.Recently,a facile ligand-engineering strategy to suppress aggregation by replacing traditional long ligands oleylamine(OAm)during the hot injection process has been reported.Here,we further explore its thermal stability and the evolution of photoluminescence quantum yield(PLQY)under ambient environment.The modified CsPbBr3 QDs film can maintain 33%of initial PL intensity,but only 17%is retained in the case of unmodified QDs after 10 h con-tinuous heating.Further,the obtained QDs with higher initial PLQY(91.8%)can maintain PLQY to 39.9%after being continuously exposed in air for 100 days,while the PLQY of original QDs is reduced to 5.5%.Furthermore,after adhering CsPbBr3 QDs on the surface of a micro SiO2 sphere,we successfully achieve the highly-efficient upconversion random laser.In comparison with the unmodified CsPbBr3 QDs,the laser from the modified CsPbBr3 QDs presents a decreased threshold of 79.81 μJ/cm2 and higher quality factor(Q)of 1312.This work may not only provide a facile strategy to synthesize CsPbBr3 QDs with excellent photochemical properties but also a bright prospect for high-performance random lasers.
文献关键词:
作者姓名:
QIAN XIONG;SIHAO HUANG;ZIJUN ZHAN;JUAN DU;XIAOSHENG TANG;ZHIPING HU;ZHENGZHENG LIU;ZEYU ZHANG;WEIWEI CHEN;YUXIN LENG
作者机构:
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics(SIOM),Chinese Academy of Sciences(CAS),Shanghai 201800,China;Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China;School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;School of Physics and Electronics,Shandong Normal University,Jinan 250014,China;College of Optoelectronic Engineering,Chongqing University of Post and Telecommunications,Chongqing 400065,China
引用格式:
[1]QIAN XIONG;SIHAO HUANG;ZIJUN ZHAN;JUAN DU;XIAOSHENG TANG;ZHIPING HU;ZHENGZHENG LIU;ZEYU ZHANG;WEIWEI CHEN;YUXIN LENG-.Surface ligand modified cesium lead bromide/silica sphere composites for low-threshold upconversion lasing)[J].光子学研究(英文),2022(03):628-636
A类:
oleylamine,OAm
B类:
Surface,cesium,lead,bromide,silica,sphere,composites,low,threshold,upconversion,lasing,In,recent,years,all,inorganic,halide,perovskite,quantum,dots,QDs,have,drawn,attention,promising,candi,dates,photodetectors,light,emitting,diodes,applications,However,sensitivity,instability,moisture,seriously,restrict,their,practical,optoelectronic,devices,Recently,facile,engineering,strategy,suppress,aggregation,by,replacing,traditional,long,ligands,during,injection,process,has,been,reported,Here,further,explore,its,thermal,evolution,photoluminescence,yield,PLQY,under,ambient,environment,CsPbBr3,film,maintain,initial,intensity,but,only,retained,case,unmodified,after,heating,obtained,higher,being,continuously,exposed,air,days,while,original,reduced,Furthermore,adhering,surface,micro,SiO2,successfully,achieve,highly,efficient,random,comparison,from,presents,decreased,quality,This,work,may,not,provide,synthesize,excellent,photochemical,properties,also,bright,prospect,performance,lasers
AB值:
0.598866
相似文献
Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity
Meifeng Wang;Yiru Qin;Wei Shao;ZhiWang Cai;Xiaoyu Zhao;Yongjun Hu;Tao Zhang;Sheng Li;Mark T.Swihart;Yang Liu;Wei Wei-MOE&Guangdong Provincial Key Laboratory of Laser Life Science,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes,College of Biophotonics,South China Normal University,Guangzhou 510631,China;Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology,Institute of Insect Science and Technology&School of Life Sciences,South China Normal University,Guangzhou 510631,China;State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China;Department of Chemical and Biological Engineering,University at Buffalo,the State University of New York,Buffalo,NY 14260,United States
Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility,super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation
Zhao-Hui Zhang;Zuan-Yu Chen;Yi-Hao Tang;Yu-Tong Li;Dequan Ma;Guo-Dong Zhang;Rabah Boukherroub;Cheng-Fei Cao;Li-Xiu Gong;Pingan Song;Kun Cao;Long-Cheng Tang-College of Material,Chemistry and Chemical Engineering,Key Laboratory of Organosilicon Chemistry and Material Technology of MoE,Hangzhou Normal University,Hangzhou,311121,China;Univ.Lille,CNRS,Centrale Lille,Univ.Polytechnique Hauts-de-France,UMR 8520-IEMN,F-59000 Lille,France;China Helicopter Research and Development Institute,Jingdezhen.333001,China;Tianjin Helicopter Co.,Ltd.,Tianjin,300308,China;Centre for Future Materials,University of Southern Queensland.Springfield Campus,QLD,4300,Australia;State Key Laboratory of Chemical Engineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou,310027,China
High effiiciency pure blue perovskite quantum dot light-emitting diodes based on formamidinium manipulating carrier dynamics and electron state filling
Long Gao;Yilin Zhang;Lijie Gou;Qian Wang;Meng Wang;Weitao Zheng;Yinghui Wang;Hin-Lap Yip;Jiaqi Zhang-College of Materials Science and Engineering,Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130012,China;Femtosecond Laser laboratory,Key Laboratory of Physics and Technology for Advanced Batteries,Ministry of Education,College of Physics,Jilin University,Changchun 130012,China;Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong,China;School of Energy and Environment,City University of Hong Kong,Kowloon,Hong Kong,China;Hong Kong Institute for Clean Energy,City University of Hong Kong,Kowloon,Hong Kong,China
Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure
Lingmei Kong;Jialong Wu;Yunguo Li;Fan Cao;Feijiu Wang;Qianqian Wu;Piaoyang Shen;Chengxi Zhang;Yun Luo;Lin Wang;Lyudmila Turyanska;Xingwei Ding;Jianhua Zhang;Yongbiao Zhao;Xuyong Yang-Key Laboratory of Advanced Display and System Applications of Ministry of Education,Shanghai University,Shanghai 200072,China;CAS Key Laboratory of Crust-Mantle Materials and Environments,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China;Henan Key Laboratory of Photovoltaic Materials,Henan University,Kaifeng 475004,China;Faculty of Engineering,University of Nottingham,Nottingham NG72RD,UK;Center for Optoelectronic Engineering Research,Department of Physics,School of Physics and Astronomy,Yunnan University,Kunming 650091,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。