典型文献
基于增强计算机断层扫描的列线图模型鉴别胃神经鞘瘤与胃间质瘤的价值
文献摘要:
目的:构建基于增强计算机断层扫描(CT)影像学特征的列线图模型,辅助医师鉴别胃神经鞘瘤与胃间质瘤。方法:回顾性收集2012年1月1日至2022年1月1日于浙江大学医学院附属第二医院和中国科学院大学宁波华美医院经手术病理证实的57例胃神经鞘瘤和275例胃间质瘤患者的相关资料,其中39例胃神经鞘瘤和201例胃间质瘤患者纳入训练集,余18例胃神经鞘瘤和74例胃间质瘤患者纳入验证集。收集增强CT影像学特征(肿瘤大小指数、增强扫描动脉期CT值、增强扫描静脉期CT值、有无坏死、有无钙化、黏膜面是否完整、是否均匀强化等)和临床资料[胃炎病史、糖类抗原19-9(CA19-9)、癌胚抗原、单核细胞与淋巴细胞比值(MLR)等]。采用最小绝对收缩和选择算法(LASSO)回归分析筛选鉴别胃神经鞘瘤与胃间质瘤的影像学特征独立预测因子,基于增强CT影像学特征构建列线图模型。采用logistic回归分析筛选鉴别胃神经鞘瘤与胃间质瘤的临床指标独立预测因子,构建临床对照模型。绘制受试者操作特征曲线(ROC)分析列线图模型在训练集和验证集的曲线下面积(AUC),并通过一致性指数(CI)、决策曲线分析(DCA)评估列线图模型的预测效能和临床应用价值。统计学方法采用DeLong检验。结果:LASSO回归分析显示,肿瘤大小指数、增强扫描动脉期CT值、增强扫描静脉期CT值、有无坏死、有无钙化、黏膜面是否完整、是否均匀强化是鉴别胃神经鞘瘤与胃间质瘤的影像学特征独立预测因子(均
P<0.05)。logistic回归分析显示,胃炎病史(
OR=0.280,95%置信区间0.138~0.566)、CA19-9(
OR=0.940,95%置信区间0.890~0.993)、癌胚抗原(
OR=0.794,95%置信区间0.661~0.952)、MLR(
OR=0.087,95%置信区间0.009~0.860)为鉴别胃间质瘤与胃神经鞘瘤的临床指标独立预测因子(
P<0.001、=0.028、0.013、0.037)。列线图模型在训练集、验证集的AUC为0.881、0.850,临床对照模型在训练集、验证集的AUC为0.814、0.772,差异均有统计学意义(
Z=2.57、1.96,
P=0.005、0.030)。列线图模型平均CI为0.885。DCA显示,列线图模型在区分胃神经鞘瘤与胃间质瘤方面比临床对照模型具有更高的总体净获益。
结论:基于增强CT影像学特征构建的列线图模型可有效区分胃神经鞘瘤与胃间质瘤,有助于医师做出精确的临床决策。
文献关键词:
增强CT;影像学特征;列线图;胃神经鞘瘤;胃间质瘤
中图分类号:
作者姓名:
王小会;孙微;张景峰;丁巧灵;余日胜
作者机构:
中国科学院大学宁波华美医院放射科,宁波 315000;浙江大学医学院附属第二医院放射科,杭州 310000
文献出处:
引用格式:
[1]王小会;孙微;张景峰;丁巧灵;余日胜-.基于增强计算机断层扫描的列线图模型鉴别胃神经鞘瘤与胃间质瘤的价值)[J].中华消化杂志,2022(09):596-603
A类:
B类:
增强计算机断层扫描,列线图模型,胃神经鞘瘤,胃间质瘤,影像学特征,浙江大学,学医,中国科学院大学,华美,经手,手术病理,训练集,验证集,肿瘤大小,小指,增强扫描,动脉期,钙化,胃炎,糖类抗原,CA19,癌胚抗原,单核细胞与淋巴细胞比值,MLR,选择算法,LASSO,预测因子,特征构建,logistic,临床指标,临床对照,受试者操作特征曲线,决策曲线分析,DCA,预测效能,临床应用价值,统计学方法,DeLong,置信区间,模型平均,临床决策
AB值:
0.148258
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。