FAILED
首站-论文投稿智能助手
典型文献
基于衰老相关基因构建预测乳腺癌预后的模型
文献摘要:
目的 通过生物信息学筛选影响乳腺癌患者预后的衰老基因,并构建预测乳腺癌预后模型.方法 从癌症基因组图谱(the cancer genome atlas,TCGA)数据库下载2010年9月至2015年6月美国国家癌症中心收集的乳腺癌患者的临床资料及mRNA转录组测序数据,利用Aging Atlas数据库检索出衰老相关基因,比较并筛选出正常组织与乳腺癌组织的差异衰老基因.通过单因素Cox回归和Lasso回归筛选出预后相关的衰老基因并构建风险预测模型,以危险系数的中位数作为截值,将患者分为高风险组和低风险组.通过单因素及多因素分析,筛选影响患者预后的独立危险因素.通过纳入患者年龄、T分期、N分期及风险模型构建Nomogram,最后利用基因富集分析(gene set enrichment analysis,GSEA)软件对预后相关的衰老基因进行功能富集分析.结果 共筛选出119个表达差异的衰老基因,单因素Cox回归筛选出10个预后相关的衰老基因,其中包含2个抑癌基因(NRG1、IL2RG)和8个促癌基因(EIF4EBP1、MMP1、PLAU、MMP13、RAD51、FGF7、DLL3、IGFBP1).通过Lasso回归构建10基因预测模型,发现高低风险组之间的预后存在显著差异(P<0.001).Nomogram模型对乳腺癌患者3年的预测准确性高.GSEA发现高风险患者的基因显著富集在细胞周期、同源重组等信号通路等.而低风险患者的基因显著富集在JAK-STAT信号通路、细胞因子-受体-相互作用等信号通路中.结论 基于衰老相关基因构建的模型对预测乳腺癌患者的预后有良好的效能.
文献关键词:
乳腺癌;生物信息学;衰老基因;预后
作者姓名:
李晓平;邱超然;余绮荷;陈奇仰;方月湾
作者机构:
江门市中心医院 乳腺科,广东 江门 529000;江门市中心医院 肿瘤内科,广东 江门 529000;台山市都斛卫生院 外科,广东 台山 529243;江门市中心医院 胃肠外科,广东 江门 529000
引用格式:
[1]李晓平;邱超然;余绮荷;陈奇仰;方月湾-.基于衰老相关基因构建预测乳腺癌预后的模型)[J].临床普外科电子杂志,2022(02):6-12
A类:
IL2RG
B类:
衰老相关基因,乳腺癌患者,衰老基因,预后模型,癌症基因组图谱,cancer,genome,atlas,TCGA,下载,转录组测序,序数,Aging,Atlas,数据库检索,正常组织,癌组织,Cox,Lasso,风险预测模型,危险系数,中位数,高风险组,低风险组,多因素分析,患者年龄,风险模型,Nomogram,基因富集分析,gene,set,enrichment,analysis,GSEA,功能富集分析,表达差异,抑癌基因,NRG1,促癌基因,EIF4EBP1,PLAU,MMP13,RAD51,FGF7,DLL3,IGFBP1,预测准确性,高风险患者,细胞周期,同源重组,JAK,STAT
AB值:
0.354096
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。