首站-论文投稿智能助手
典型文献
Endogenous versus exogenous cell replacement for Parkinson's disease:where are we at and where are we going?
文献摘要:
Parkinson's disease is the second most common neurodegenerative disease and has currently no effective treatment,one that would be able to stop or reverse the loss of dopaminergic neurons in the substantia nigra pars compacta.In addition,Parkinson's disease diagnosis is typically done when a significant percentage of the dopaminergic neurons is already lost.In neurodegenerative disorders,some therapeutic strategies could be effective only at inhibiting further degeneration;on the other hand,cell replacement therapies aim at replacing lost neurons,an approach that would be ideal for the treatment of Parkinson's disease.Many cell replacement therapies have been tested since the 1970s in the field of Parkinson's disease;however,there are still significant limitations prohibiting a successful clinical application.From the first fetal midbrain intrastriatal graft to the most recent conversion of astrocytes into dopaminergic neurons,we have gained equally,significant insights and questions still looking for an answer.This review aims to summarize the main milestones in cell replacement approaches against Parkinson's disease.By focusing on achievements and failures,as well as on the additional research steps needed,we aim to provide perspective on how future cell replacement therapies treats Parkinson's disease.
文献关键词:
作者姓名:
Theodora Mourtzi;Ilias Kazanis
作者机构:
Laboratory of Developmental Biology,Department of Biology,University of Patras,Patras,Greece
引用格式:
[1]Theodora Mourtzi;Ilias Kazanis-.Endogenous versus exogenous cell replacement for Parkinson's disease:where are we at and where are we going?)[J].中国神经再生研究(英文版),2022(12):2637-2642
A类:
prohibiting,intrastriatal
B类:
Endogenous,versus,exogenous,cell,replacement,Parkinson,disease,where,are,going,second,most,common,neurodegenerative,has,currently,effective,treatment,that,would,able,stop,reverse,loss,dopaminergic,neurons,substantia,nigra,pars,compacta,In,diagnosis,typically,done,when,significant,percentage,already,lost,disorders,some,therapeutic,strategies,could,only,inhibiting,further,degeneration,other,hand,therapies,replacing,ideal,Many,have,been,tested,since,1970s,field,however,there,still,limitations,successful,clinical,application,From,first,fetal,midbrain,graft,recent,conversion,astrocytes,into,gained,equally,insights,questions,looking,answer,This,review,aims,summarize,main,milestones,approaches,against,By,focusing,achievements,failures,well,additional,research,steps,needed,provide,perspective,future,treats
AB值:
0.572721
相似文献
CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson’s disease
Lu Lin;Mao Hengxu;Zhou Miaomiao;Lin Yuwan;Dai Wei;Qiu Jiewen;Xiao Yousheng;Mo Mingshu;Zhu Xiaoqin;Wu Zhuohua;Pei Zhong;Guo Wenyuan;Xu Pingyi;Chen Xiang-Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China;Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China;School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China;Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
Pharmacodynamic,pharmacokinetic,and phase 1a study of bisthianostat,a novel histone deacetylase inhibitor,for the treatment of relapsed or refractory multiple myeloma
Yu-bo Zhou;Yang-ming Zhang;Hong-hui Huang;Li-jing Shen;Xiao-feng Han;Xiao-bei Hu;Song-da Yu;An-hui Gao;Li Sheng;Ming-bo Su;Xiao-li Wei;Yue Zhang;Yi-fan Zhang;Zhi-wei Gao;Xiao-yan Chen;Fa-jun Nan;Jia Li;Jian Hou-National Center for New Drug Screening,State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;University of Chinese Academy of Sciences,Beijing 100049,China;Yantai Key Laboratory of Nanomedicine&Advanced Preparations,Yantai Institute of Materia Medica,Yantai 264000,China;Department of Hematology,Renji Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200127,China;Shanghai Center for Drug Metabolism and Pharmacokinetics Research,Shanghai 201203,China
Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy
Zhou Zhu;Liang-feng Liu;Cheng-fu Su;Jia Liu;Benjamin Chun-Kit Tong;Ashok lyaswamy;Senthilkumar Krishnamoorthi;Sravan Gopalkrishnashetty Sreenivasmurthy;Xin-jie Guan;Yu-xuan Kan;Wen-jian Xie;Chen-liang Zhao;King-ho Cheung;Jia-hong Lu;Jie-qiong Tan;Hong-jie Zhang;Ju-xian Song;Min Li-Mr.&Mrs.Ko Chi-Ming Centre for Parkinson's Disease Research,School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,SAR,China;School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,SAR,China;institute for Research and Continuing Education,Hong Kong Baptist University,Shenzhen 518057,China;Limin Pharmaceutical Factory,Livzon Group Limited,Shaoguan 512028,China;State Key Laboratory of Quality Research in Chinese Medicine,Institute of Chinese Medical Sciences,University of Macau,Macau,SAR,China;Center for Medical Genetics and Hunan Key Laboratory of Animal Model for Human Diseases,School of Life Sciences,Central South University,Changsha 410078,China;Medical College of Acupuncture-Moxibustion and Rehabilitation,Guangzhou University of Chinese Medicine,Guangzhou 510006,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。