首站-论文投稿智能助手
典型文献
考虑多车影响的分子动力学智能网联跟驰模型
文献摘要:
为研究含智能网联汽车(Connected and Automated Vehicle,CAV)和人工驾驶汽车(Regular Vehicle,RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在混行交通流中的跟驰过程.稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性.数值仿真与模型验证结果表明,与PATH实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m·s-1,平均误差减小26.79%,拟合精度提高了0.91%.同时,在CAV和RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加.迟滞回环曲线表明,与全速度差(Full Velocity Difference,FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强.该模型可用于同质流或CAV与人工驾驶车辆等混行环境下的CAV跟驰控制,在目前开展混行实车实验困难的情况下,为混行交通流场景下的车辆控制及交通设施规划设计提供理论依据和模型支持.
文献关键词:
交通工程;交通仿真;分子动力学;智能网联汽车;前后多车;稳定性分析
作者姓名:
宗芳;王猛;贺正冰
作者机构:
吉林大学,交通学院,长春130022;北京工业大学,城市交通学院,北京100124
引用格式:
[1]宗芳;王猛;贺正冰-.考虑多车影响的分子动力学智能网联跟驰模型)[J].交通运输系统工程与信息,2022(01):37-48
A类:
前后多车,迟滞回环
B类:
车影,分子动力学,跟驰模型,智能网联汽车,Connected,Automated,Vehicle,CAV,Regular,RV,混行交通流,流下,跟驰行为,控制问题,车头,速度差,定量表达,稳定性分析,全速,模型验证,PATH,CACC,Cooperative,Adaptive,Cruise,Control,模型平均,平均速度,最大误差,平均误差,拟合精度,车队,交通流量,Full,Velocity,Difference,FVD,跟驰控制,实车实验,车辆控制,交通设施,设施规划,交通工程,交通仿真
AB值:
0.324196
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。