首站-论文投稿智能助手
典型文献
基于DRGs入组患者的非医嘱离院神经网络预测模型效能分析
文献摘要:
目的:探讨基于DRGs入组患者的深度神经网络模型(DNN)预测非医嘱离院的效能.方法:选择2019年6月至2021年6月新疆医科大学第七附属医院经过DRGs筛选入组的10 374份病案作为样本,根据患者出院方式,将病案分为医嘱离院组及非医嘱离院组,比较两组相关资料间差异,基于Logistic回归分析及DNN建立非医嘱离院的预测模型并进行外部验证比较两种方式的预测效能.结果:非医嘱离院组患者年龄及未婚、外地、门诊入院、参加医保、大专以上学历占比均高于医嘱离院组患者,差异具有统计学意义(P<0.05).非医嘱离院组患者住院天数、住院费用、自费金额、最后诊断总条目数、急性生理与慢性健康评分表及医院获得性感染、多重耐药菌感染、入住ICU占比高于医嘱离院患者,差异具有统计学意义(P<0.05).神经网络模型的准确率、敏感度、特异度、阳性及阴性预测值显著高于Logistic模型,差异具有统计学意义(P<0.05).DNN模型预测非医嘱离院发生风险的AUC均显著高于Logistic回归模型(0.937 vs.0.718,Z=4.729,P<0.001).结论:神经网络预测模型对于基于DRGs入组患者的非医嘱离院行为预测效能较好,对于临床工作具有一定的指导意义.
文献关键词:
疾病诊断相关分组;非医嘱离院;病案分析;人工神经网络
作者姓名:
吴芳;丁欣;赵海燕
作者机构:
830000乌鲁木齐,新疆医科大学第七附属医院
文献出处:
引用格式:
[1]吴芳;丁欣;赵海燕-.基于DRGs入组患者的非医嘱离院神经网络预测模型效能分析)[J].中国数字医学,2022(07):78-84
A类:
B类:
DRGs,非医嘱离院,神经网络预测模型,效能分析,深度神经网络模型,DNN,新疆医科大学,选入,患者出院,院方,外部验证,两种方式,预测效能,患者年龄,未婚,外地,医保,大专,以上学历,住院天数,住院费用,自费,金额,条目,目数,急性生理与慢性健康评分,评分表,医院获得性感染,多重耐药菌感染,入住,ICU,阴性预测值,发生风险,行为预测,临床工作,疾病诊断相关分组,病案分析,人工神经网络
AB值:
0.275721
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。