典型文献
粒子滤波算法在BDS高铁铁轨静态形变监测中的应用研究
文献摘要:
高铁因每天清晨需要6h的空窗期维修时间而无法通行,社会的发展需要减少空窗期时间来提高高铁运转效率.传统的基于北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)的高铁铁轨路基的形变监测系统需要一天的观测时长对路基进行精确的监测,这远超高铁空窗期的观测时长无法对提高高铁运转效率起到作用.针对这种情况,在原形变监测解算算法上加入粒子滤波算法,尝试将观测时长缩减到高铁空窗期内;同时,在采样数据大幅度下降的情况下确保解算的监测点坐标值满足高铁路基的定位精度要求.本文利用广汕高铁的BDS形变监测系统的实测采样数据进行实验仿真,验证了粒子滤波算法加入后的有效性.实验结果表明,在粒子滤波算法加持下,观测时长缩减到15 min可确保监测点解算坐标值的A,B,H 3个方向精度均满足高铁路基定位的±5 mm精度要求,为减少高铁空窗期时间,提升高铁运转效率提供了有效的方法和思路.
文献关键词:
形变监测;粒子滤波;BDS (BeiDou Navigation Satellite System);高铁铁轨
中图分类号:
作者姓名:
熊武;刘义
作者机构:
广东工业大学 自动化学院,广东 广州 510006
文献出处:
引用格式:
[1]熊武;刘义-.粒子滤波算法在BDS高铁铁轨静态形变监测中的应用研究)[J].广东工业大学学报,2022(04):66-72
A类:
高铁铁轨
B类:
粒子滤波算法,BDS,形变监测,清晨,6h,空窗期,铁运,北斗卫星导航系统,BeiDou,Navigation,Satellite,System,观测时长,原形,算算,缩减到,采样数据,监测点,测点坐标,坐标值,高铁路基,定位精度,精度要求,实验仿真,加持,点解,方法和思路
AB值:
0.215092
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。