首站-论文投稿智能助手
典型文献
基于卷积神经网络的航拍视频轨道异物检测方法
文献摘要:
针对无人机航拍视频轨道异物检测存在动态背景及异物类型多样等问题,提出了一种基于CNN(卷积神经网络)的航拍视频轨道异物检测方法:对航拍单帧图像采用Canny边缘检测、概率Hough变换、线段筛选等确定轨道区域;采用改进的MobileNet CNN模型对轨道区域图像进行单帧图像异物检测分类;利用视频的帧间相关性优化单帧检测结果,得到最终的视频轨道异物检测结果;并采用 自建的实拍轨道区域图像数据集进行试验.结果表明,该方法适用于航拍视频中存在多种类型异物的情况,并能实现有效检测.
文献关键词:
轨道异物;检测方法;航拍视频;卷积神经网络
作者姓名:
俞军燕;黄皓冉;杨毅;邢宗义
作者机构:
广州地铁集团有限公司,510335,广州;南京理工大学自动化学院,210094,南京
引用格式:
[1]俞军燕;黄皓冉;杨毅;邢宗义-.基于卷积神经网络的航拍视频轨道异物检测方法)[J].城市轨道交通研究,2022(10):91-97
A类:
轨道异物,轨道异物检测
B类:
航拍视频,无人机航拍,动态背景,单帧图像,Canny,边缘检测,Hough,线段,MobileNet,检测分类,帧间相关性,单帧检测,图像数据集,多种类型,有效检测
AB值:
0.200626
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。