首站-论文投稿智能助手
典型文献
基于盾构机运行参数的局部切空间排列与Xgboost融合的地质类型识别
文献摘要:
针对土压平衡盾构机掘进过程难以实时感知掌子面地质类型的问题,提出了局部切空间排列(LTSA)与极限梯度提升(Xgboost)相结合的盾构机掌子面地质类型实时识别方法.首先,通过分析众多盾构机运行参数与掌子面地质性质的相关性,选取177个盾构机运行参数作为模型输入;其次,利用LTSA算法从高维盾构机运行参数中提取内蕴低维特征作为分类模型输入参数,基于Xgboost的识别模型实现掌子面地质类型识别;最后,采用新加坡某地铁施工数据验证算法的有效性和优越性.研究结果表明:所提算法对该工程沿线5种地质类型的识别准确率达到98.48%;采用本文方法所得的识别准确率相比于将运行参数直接作为模型输入的识别准确率提升20.96%,相比于采用总推进力、推进速度、刀盘总扭矩和刀盘转速4维特征作为输入,本文所提出方法的识别准确率提升50.16%.LTSA算法能够减少所选盾构运行参数中的冗余信息并保留其中的地质特征,解决了输入参数维度过高造成的识别模型准确率下降和训练效率降低的问题.
文献关键词:
土压平衡盾构;掘进参数;地质类型识别;LTSA;Xgboost
作者姓名:
刘明阳;余宏淦;陶建峰;覃程锦;高浩寒;刘成良
作者机构:
上海交通大学机械与动力工程学院,上海,200240
引用格式:
[1]刘明阳;余宏淦;陶建峰;覃程锦;高浩寒;刘成良-.基于盾构机运行参数的局部切空间排列与Xgboost融合的地质类型识别)[J].中南大学学报(自然科学版),2022(06):2080-2091
A类:
地质类型识别
B类:
机运,运行参数,局部切空间排列,Xgboost,土压平衡盾构机,掘进过程,实时感知,掌子面,LTSA,极限梯度提升,实时识别,地质性质,模型输入,高维,内蕴,低维特征,分类模型,输入参数,识别模型,模型实现,新加坡,地铁施工,施工数据,数据验证,种地,识别准确率,准确率提升,推进力,推进速度,刀盘,扭矩,冗余信息,地质特征,模型准确率,训练效率,掘进参数
AB值:
0.27611
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。