首站-论文投稿智能助手
典型文献
Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy
文献摘要:
High-speed high-resolution imaging of the whole-brain hemodynamics is critically important to facilitating neurovascular research.High imaging speed and image quality are crucial to visualizing real-time hemodynamics in complex brain vascular networks,and tracking fast pathophysiological activities at the microvessel level,which will enable advances in current queries in neurovascular and brain metabolism research,including stroke,dementia,and acute brain injury.Further,real-time imaging of oxygen saturation of hemoglobin(sO2)can capture fast-paced oxygen delivery dynamics,which is needed to solve pertinent questions in these fields and beyond.Here,we present a novel ultrafast functional photoacoustic microscopy(UFF-PAM)to image the whole-brain hemodynamics and oxygenation.UFF-PAM takes advantage of several key engineering innovations,including stimulated Raman scattering(SRS)based dual-wavelength laser excitation,water-immersible 12-facet-polygon scanner,high-sensitivity ultrasound transducer,and deep-learning-based image upsampling.A volumetric imaging rate of 2 Hz has been achieved over a field of view(FOV)of 11×7.5×1.5 mm3 with a high spatial resolution of~10 μm.Using the UFF-PAM system,we have demonstrated proof-of-concept studies on the mouse brains in response to systemic hypoxia,sodium nitroprusside,and stroke.We observed the mouse brain's fast morphological and functional changes over the entire cortex,including vasoconstriction,vasodilation,and deoxygenation.More interestingly,for the first time,with the whole-brain FOV and micro-vessel resolution,we captured the vasoconstriction and hypoxia simultaneously in the spreading depolarization(SD)wave.We expect the new imaging technology will provide a great potential for fundamental brain research under various pathological and physiological conditions.
文献关键词:
作者姓名:
Xiaoyi Zhu;Qiang Huangl;Anthony DiSpirito;Tri Vu;Qiangzhou Rong;Xiaorui Peng;Huaxin Sheng;Xiling Shen;Qifa Zhou;Laiming Jiang;Ulrike Hoffmann;Junjie Yao
作者机构:
Department of Biomedical Engineering,Duke University,Durham,NC 27708,USA;Department of Pediatric Surgery,Second Affiliated Hospital of Xi'an Jiaotong University,Xi'an,Shaanxi,China;Roski Eye Institute,Department of Ophthalmology,Keck School of Medicine,University of Southern California,Los Angeles,CA 90033,USA;Department of Biomedical Engineering,University of Southern California,Los Angeles,CA 90089,USA;Department of Anesthesiology,Duke University,Durham,NC 27708,USA
引用格式:
[1]Xiaoyi Zhu;Qiang Huangl;Anthony DiSpirito;Tri Vu;Qiangzhou Rong;Xiaorui Peng;Huaxin Sheng;Xiling Shen;Qifa Zhou;Laiming Jiang;Ulrike Hoffmann;Junjie Yao-.Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy)[J].光:科学与应用(英文版),2022(06):1238-1252
A类:
immersible,upsampling
B类:
Real,whole,imaging,hemodynamics,resolution,ultrafast,wide,photoacoustic,microscopy,High,speed,high,critically,important,facilitating,neurovascular,research,image,quality,are,crucial,visualizing,real,complex,networks,tracking,pathophysiological,activities,microvessel,level,which,will,enable,advances,current,queries,metabolism,including,stroke,dementia,acute,injury,Further,saturation,hemoglobin,sO2,paced,delivery,needed,solve,pertinent,questions,these,fields,beyond,Here,we,present,novel,functional,UFF,PAM,takes,advantage,several,key,engineering,innovations,stimulated,Raman,scattering,SRS,dual,wavelength,laser,excitation,water,facet,polygon,scanner,sensitivity,ultrasound,transducer,deep,learning,volumetric,has,been,achieved,over,view,FOV,mm3,spatial,Using,have,demonstrated,proof,concept,studies,mouse,brains,response,systemic,hypoxia,sodium,nitroprusside,We,observed,morphological,changes,entire,cortex,vasoconstriction,vasodilation,deoxygenation,More,interestingly,first,captured,simultaneously,spreading,depolarization,expect,new,technology,provide,great,potential,fundamental,under,various,pathological,conditions
AB值:
0.571034
相似文献
Quantum dots assisted in vivo two-photon microscopy with NIR-II emission
Huwei Ni;Yalun Wang;Tao Tang;Wenbin Yu;Dongyu Li;Mubin He;Runze Chen;Mingxi Zhang;Jun Qian-State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China;SIEE (Sussex AI Institute), Zhejiang Gongshang University, Hangzhou 310018, China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;e-mail: mxzhang@whut.edu.cn;e-mail: qianjun@zju.edu.cn
Axial gradient excitation accelerates volumetric imaging of two-photon microscopy
YUFENG GAO;XIANYUAN XIA;LINA LIU;TING WU;TINGAI CHEN;JIA YU;ZHILI XU;LIANG WANG;FEI YAN;ZHUO DU;JUN CHU;YANG ZHAN;BO PENG;HUI LI;WEI ZHENG-Research Center for Biomedical Optics and Molecular Imaging,Shenzhen Key Laboratory for Molecular Imaging,Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;CAS Key Laboratory of Health Informatics,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Paul C.Lauterbur Research Center for Biomedical Imaging,Institute of Biomedical and Health Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;State Key Laboratory of Molecular Developmental Biology,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;Key Laboratory of Genetic Network Biology,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;Brain Cognition and Brain Disease Institute,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Centre for Micro Nano Systems and Bionic Medicine,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy
Mark A. Keppler;Zachary A. Steelman;Zachary N. Coker;Milo? Nesládek;Philip R. Hemmer;Vladislav V. Yakovlev;Joel N. Bixler-Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA;SAIC, JBSA Fort Sam Houston, Texas 78234, USA;National Research Council Research Associateship Program, Washington, DC 20001, USA;IMOMEC Division, IMEC, B-3590 Diepenbeek, Belgium;Institute for Materials Research (IMO), Hasselt University, B-3590 Diepenbeek, Belgium;Czech Technical University in Prague, 27201 Kladno, Czech Republic;Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA;Bioeffects Division, Airman System Directorate, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA;e-mail: yakovlev@tamu.edu
Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy
MARK A.KEPPLER;ZACHARY A.STEELMAN;ZACHARY N.COKER;MILO? NESLáDEK;PHILIP R.HEMMER;VLADISLAV V.YAKOVLEV;JOEL N.BIXLER-Department of Biomedical Engineering,Texas A&M University,College Station,Texas 77843,USA;SAIC,JBSA Fort Sam Houston,Texas 78234,USA;National Research Council Research Associateship Program,Washington,DC 20001,USA;IMOMEC Division,IMEC,B-3590 Diepenbeek,Belgium;Institute for Materials Research(IMO),Hasselt University,B-3590 Diepenbeek,Belgium;Czech Technical University in Prague,27201 Kladno,Czech Republic;Department of Electrical and Computer Engineering,Texas A&M University,College Station,Texas 77843,USA;Bioeffects Division,Airman System Directorate,Air Force Research Laboratory,JBSA Fort Sam Houston,Texas 78234,USA
Continuous subcellular resolution three-dimensional imaging on intact macaque brain
Can Zhou;Xiaoquan Yang;Shihao Wu;Qiuyuan Zhong;Ting Luo;Anan Li;Guangcai Liu;Qingtao Sun;Pan Luo;Lei Deng;Hong Ni;Chaozhen Tan;Jing Yuan;Qingming Luo;Xintian Hu;Xiangning Li;Hui Gong-Britton Chance Center for Biomedical Photonics,Wuhan National Laboratory for Optoelectronics,MoE Key Laboratory for Biomedical Photonics,Huazhong University of Science and Technology,Wuhan 430074,China;HUST-Suzhou Institute for Brainsmatics,JITRI,Suzhou 215123,China;Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China;Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province,Kunming Institute of Zoology,Kunming 650223,China;CAS Center for Excellence in Brain Science and Intelligence Technology,Chinese Academy of Sciences,Shanghai 200031,China;UST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China;Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China;HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China;CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature
Sai Li;Ao Du;Yadong Wang;Xinran Wang;Xueying Zhang;Houyi Cheng;Wenlong Cai;Shiyang Lu;Kaihua Cao;Biao Pan;Na Lei;Wang Kang;Junming Liu;Albert Fert;Zhipeng Hou;Weisheng Zhao-Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China;Shenyuan Honors College,Beihang University,Beijing 100191,China;Beihang-Geortek Joint Microelectronics Institute,Qingdao Research Institute,Beihang University,Qingdao 266104,China;Guangdong Provincial Key Laboratory of Optical Information Materials and Technology&Institute for Advanced Materials,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China;Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 211102,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。