首站-论文投稿智能助手
典型文献
BODIPY 493 acts as a bright buffering fluorogenic probe for super-resolution imaging of lipid droplet dynamics
文献摘要:
The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes.Due to the inevitable photo-bleaching of fluorophores,it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modifi-cation to suppress TICT formation.The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target,which greatly improves the photosta-bility and enables stable dynamic super-resolution imaging for a long time.But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets,resulting in low staining fluorescence intensity.In this paper,we selected BODIPY 493,a lipid droplet probe with high fluorescence brightness,to explore the dynamic process of lipid droplet staining of this probe in cells.We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accu-mulation in lipid droplets and the high brightness,and the spatiotemporal resolution is greatly improved.More importantly,we found that BODIPY 493 also has a certain buffering capacity,which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics.This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.
文献关键词:
作者姓名:
Jie Chen;Wenjuan Liu;Xiangning Fang;Qinglong Qiao;Zhaochao Xu
作者机构:
CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China;University of Chinese Academy of Sciences,Beijing 100049,China
引用格式:
[1]Jie Chen;Wenjuan Liu;Xiangning Fang;Qinglong Qiao;Zhaochao Xu-.BODIPY 493 acts as a bright buffering fluorogenic probe for super-resolution imaging of lipid droplet dynamics)[J].中国化学快报(英文版),2022(12):5042-5046
A类:
photobleached,photosta
B类:
BODIPY,acts,buffering,fluorogenic,super,resolution,imaging,lipid,dynamics,long,term,fluorescence,has,motivated,photostability,fluorescent,probes,Due,inevitable,bleaching,fluorophores,difficult,obtain,regardless,self,healing,strategy,introducing,peroxide,scavengers,structure,modifi,cation,suppress,TICT,formation,buffered,uses,intact,pool,continuously,replace,ones,which,greatly,improves,enables,stable,But,capacity,comes,expense,reducing,number,targets,resulting,low,staining,intensity,In,this,paper,selected,high,brightness,explore,process,cells,We,found,that,only,needs,very,laser,power,due,molecular,accu,mulation,droplets,spatiotemporal,improved,More,importantly,also,certain,used,This,work,reminds,researchers,coordinate
AB值:
0.454495
相似文献
A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living cells and tissues
Mingyue Zhu;Zhenhao Tian;Lingling Jin;Xiaokui Huo;Chao Wang;Jingnan Cui;Yan Tian;Xiangge Tian;Lei Feng-College of Pharmacy,School of Medicine,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines,Engineering Laboratory of Development and Application of Traditional Chinese Medicines,Hangzhou Normal University,Hangzhou 311121,China;Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention,College of Pharmacy,College of Integrative Medicine,Dalian Medical University,Dalian 116044,China;School of Life Sciences,Northwestern Polytechnical University,Xi'an 710072,China;State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China
Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells
Meiling Guan;Miaoyan Wang;Karl Zhanghao;Xu Zhang;Meiqi Li;Wenhui Liu;Jing Niu;Xusan Yang;Long Chen;Zhenli Jing;Micheal Q.Zhang;Dayong Jin;Peng Xi;Juntao Gao-Department of Biomedical Engineering,College of Future Technology,Peking University,Beijing 100871,China;UTS-SUStech Joint Research Centre for Biomedical Materials & Devices,Department of Biomedical Engineering,College of Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,China;MOE Key Laboratory of Bioinformatics,Bioinformatics Division,Center for Synthetic & Systems Biology,BNRist,Beijing,China;Center for Synthetic & Systems Biology; Department of Automation,Tsinghua University,Beijing 100084,China;Beijing Institute of Collaborative Innovation,Beijing 100094,China;Department of Biological Sciences and Center for System Biology,The University of Texas at Dallas,Richardson 75080,USA;School of Medical Sciences,Tsinghua University,Beijing 100084,China;Institute for Biomedical Materials and Devices (IBMD),Faculty of Science,University of Technology Sydney,Sydney,NSW 2007,Australia;National Biomedical Imaging Center,Peking University,Beijing 100871,China
Deep learning acceleration of multiscale superresolution localization photoacoustic imaging
Jongbeom Kim;Gyuwon Kim;Lei Li;Pengfei Zhang;Jin Young Kim;Yeonggeun Kim;Hyung Ham Kim;Lihong V.Wang;Seungchul Lee;Chulhong Kim-Departments of Electrical Engineering,Mechanical Engineering,Convergence IT Engineering,and Interdisciplinary Bioscience and Bioengineering,Graduate School of Artificial Intelligence,Medical Device Innovation Center,Pohang University of Science and Technology(POSTECH),77 Cheongam-ro,Nam-gu,Pohang,Gyeongbuk 37673,Republic of Korea;Caltech Optical Imaging Laboratory,Andrew and Peggy Cherng Department of Medical Engineering,Department of Electrical Engineering,California Institute of Technology,1200 E.California Blvd.,MC 138-78,Pasadena,CA 91125,USA;School of Precision Instruments and Optoelectronics Engineering,Tianjin University,92 Weijin Road,Nankai District,Tianjin 300072,China;Opticho,532,CHANGeUP GROUND,87 Cheongam-ro,Nam-gu,Pohang,Gyeongsangbuk 37673,Republic of Korea
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。