典型文献
Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks
文献摘要:
Pantothenic acid deficiency(PAD)in animals causes growth depression,fasting hypoglycemia and impaired lipid and glucose metabolism.However,a systematic multi-omics analysis of effects of PAD on hepatic function has apparently not been reported.We investigated liver proteome and metabolome changes induced by PAD to explain its effects on growth and liver metabolic disorders.Pekin ducks(1-d-old,n=128)were allocated into 2 groups,with 8 replicates and 8 birds per replicate.For 16 d,all ducks had ad libitum access to either a PAD or a pantothenic acid adequate(control,CON)diet,formulated by supplementing a basal diet with 0 or 8 mg pantothenic acid/kg of diet,respectively.Liver enlargement,elevated liver glycogen concentrations and decreased liver concentrations of triglyceride and unsatu-rated fatty acids were present in the PAD group compared to the CON group.Based on integrated liver proteomics and metabolomics,PAD mainly affected glycogen synthesis and degradation,glycolysis and gluconeogenesis,tricarboxylic acid(TCA)cycle,peroxisome proliferator-activated receptor(PPAR)signaling pathway,fatty acid beta oxidation,and oxidative phosphorylation.Selected proteins were confirmed by Western blotting.Downregulation of proteins and metabolites involved in glycogen syn-thesis and degradation,glycolysis and gluconeogenesis implied that these processes were impaired in PAD ducks,which could have contributed to fasting hypoglycemia,liver glycogen storage,insufficient ATP production,and growth retardation.In contrast,PAD also upregulated proteins and metabolites involved in fatty acid beta oxidation,the TCA cycle,and oxidative phosphorylation processes in the liver;presumably compensatory responses to produce ATP.We inferred that PAD decreased liver triglyceride and unsaturated fatty acids by activating fatty acid beta oxidation and impairing unsaturated fatty acid synthesis.These findings contributed to our understanding of the mechanisms of PAD-induced changes in hepatic metabolism.
文献关键词:
中图分类号:
作者姓名:
Jing Tang;Yongbao Wu;Bo Zhang;Suyun Liang;Zhanbao Guo;Jian Hu;Zhengkui Zhou;Ming Xie;Shuisheng Hou
作者机构:
State Key Laboratory of Animal Nutrition,Key Laboratory of Animal(Poultry)Genetics Breeding and Reproduction,Ministry of Agriculture and Rural Affairs,Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,100193,Beijing,China
文献出处:
引用格式:
[1]Jing Tang;Yongbao Wu;Bo Zhang;Suyun Liang;Zhanbao Guo;Jian Hu;Zhengkui Zhou;Ming Xie;Shuisheng Hou-.Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks)[J].动物营养(英文),2022(04):1-14
A类:
Pantothenic
B类:
Integrated,liver,proteomics,metabolomics,identify,metabolic,pathways,affected,by,pantothenic,deficiency,Pekin,ducks,PAD,animals,causes,growth,depression,fasting,hypoglycemia,impaired,lipid,glucose,metabolism,However,systematic,multi,analysis,effects,hepatic,function,has,apparently,not,been,reported,investigated,proteome,metabolome,changes,induced,explain,its,disorders,old,were,allocated,into,groups,replicates,birds,For,had,libitum,access,either,adequate,control,CON,diet,formulated,supplementing,basal,respectively,Liver,enlargement,elevated,glycogen,concentrations,decreased,triglyceride,fatty,acids,present,compared,Based,integrated,mainly,synthesis,degradation,glycolysis,gluconeogenesis,tricarboxylic,TCA,cycle,peroxisome,proliferator,activated,receptor,PPAR,signaling,beta,oxidation,oxidative,phosphorylation,Selected,proteins,confirmed,blotting,Downregulation,metabolites,involved,implied,that,these,processes,which,could,have,contributed,storage,insufficient,ATP,production,retardation,contrast,also,upregulated,presumably,compensatory,responses,produce,inferred,unsaturated,activating,impairing,These,findings,our,understanding,mechanisms
AB值:
0.5105
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。