首站-论文投稿智能助手
典型文献
Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype- dependent manner
文献摘要:
Dietary threonine (Thr) deficiency increases hepatic triglyceride content and reduces sebum and abdominal fat percentages in lean type (LT), but not in fatty type (FT) Pekin ducks. However, the molecular changes regarding the role of Thr in lipid metabolism in LT and FT ducks induced by Thr deficiency remains unknown. This study compared differential expression gene profiles related to lipid metabolism in FT and LT Pekin ducks affected by Thr deficiency. We performed transcriptomic profiling and scanned the gene expression in the liver, sebum, and abdominal fat of Pekin ducks fed either Thr-deficient or Thr-adequate diet for 21 days from 14 to 35 days of age. There were 187, 52, and 50 differentially expressed genes (DEGs) identified in the liver, sebum, and abdominal fat of LT ducks affected by Thr deficiency, of which 12, 9, and 5 genes were involved in lipid metabolism, respectively. Thr deficiency altered the expression of 27, 6, and 3 genes in FT ducks' liver, sebum, and abdominal fat, respectively. None of the DEGs had a relationship with lipid metabolism in FT ducks. KEGG analysis showed that the DEGs in the LT ducks' livers were enriched in lipid metabolism pathways (linolenic acid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolism pathways (biosynthesis of amino acids, phenylalanine metabolism, β-alanine metabolism, and glycine, serine and threonine metabolisms). The DEGs in the sebum and abdominal fat of LT ducks were not enriched in lipid and amino acid metabolic pathways. Additionally, DEGs involved in lipid metabolism were found to be upregulated by Thr deficiency in LT ducks, such as malic enzyme 3 (ME3), acyl-CoA synthetase short-chain family member 2 (ACSS2) in liver, and lipase member M (LIPM) in sebum. In summary, dietary Thr deficiency regulated the gene expression involved in lipid metabolism in the liver, sebum, and abdominal fat of Pekin ducks in a genotype-dependent manner.
文献关键词:
作者姓名:
JIANG Yong;MA Xin-yan;XIE Ming;ZHOU Zheng-kui;TANG Jing;CHANG Guo-bin;CHEN Guo-hong;HOU Shui-sheng
作者机构:
College of Animal Science and Technology,Yangzhou University,Yangzhou 225009,P.R.China;State Key Laboratory of Livestock and Poultry Breeding/Key Laboratory of Animal Nutrition and Feed Science in South China/Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition,Institute of Animal Sciences,Guangdong Academy of Agricultural Sciences,Guangzhou 510640,P.R.China;Key Laboratory of Animal(Poultry)Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs/State Key Laboratory of Animal Nutrition,Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193,P.R.China
引用格式:
[1]JIANG Yong;MA Xin-yan;XIE Ming;ZHOU Zheng-kui;TANG Jing;CHANG Guo-bin;CHEN Guo-hong;HOU Shui-sheng-.Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype- dependent manner)[J].农业科学学报(英文),2022(09):2691-2699
A类:
ACSS2,LIPM
B类:
Dietary,threonine,deficiency,affects,expression,genes,involved,adipose,tissues,Pekin,ducks,genotype,dependent,manner,Thr,increases,hepatic,triglyceride,content,reduces,sebum,abdominal,percentages,lean,LT,but,fatty,FT,However,molecular,changes,regarding,role,induced,by,remains,unknown,This,study,compared,profiles,related,affected,We,performed,transcriptomic,profiling,scanned,fed,either,deficient,adequate,days,from,There,were,differentially,expressed,DEGs,identified,which,respectively,altered,None,had,relationship,analysis,showed,that,livers,enriched,pathways,linolenic,glycerophospholipid,arachidonic,amino,biosynthesis,acids,phenylalanine,glycine,serine,metabolisms,metabolic,Additionally,found,upregulated,such,malic,enzyme,ME3,acyl,CoA,synthetase,short,chain,family,member,lipase,In,summary,dietary
AB值:
0.36164
相似文献
Chronic exposure to high-density polyethylene microplastic through feeding alters the nutrient metabolism of juvenile yellow perch(Perca flavescens)
Xing Lu;Dong-Fang Deng;Fei Huang;Fabio Casu;Emma Kraco;Ryan J.Newton;Merry Zohn;Swee J.Teh;Aaron M.Watson;Brian Shepherd;Ying Ma;Mahmound A.O.Dawood;Lorena M.Rios Mendoza-School of Freshwater Sciences,University of Wisconsin,Milwaukee,WI 53204,USA;Yangtze River Fisheries Research Institute,Chinese Academy of Fishery Sciences,Wuhan,China;South Carolina Department of Natural Resources,Charleston,SC 29412,USA;USDA/ARS/School of Freshwater Sciences,University of Wisconsin,Milwaukee,WI 53204,USA;School of Veterinary Medicine,Department of Anatomy,Physiology,and Cell Biology,University of California,Davis,CA 95616,USA;Fisheries College,Jimei University,Xiamen,China;Faculty of Agriculture,Kafrelsheikh University,Kafr El-Sheikh,Egypt;Department of Natural Sciences,Marine Resources Research Institute,University of Wisconsin,Superior,WI 54880,USA
Microbiome and ileum transcriptome revealed the boosting effects of selenium yeast on egg production in aged laying hens
Zhexi Liu;Yutao Cao;Yue Ai;Xiaonan Yin;Linli Wang;Mengyao Wang;Bingkun Zhang;Zhengxing Lian;Keliang Wu;Yuming Guo;Hongbing Han-Beijing Key Laboratory of Animal Genetic Improvement,College of Animal Science and Technology,China Agricultural University,Beijing,China;National Engineering Laboratory for Animal Breeding,College of Animal Science and Technology,China Agricultural University,Beijing,China;Key Laboratory of Animal Genetics,Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs,College of Animal Science and Technology,China Agricultural University,Beijing,China;Beijing Alltech Biological Products(China)Co.,Ltd.,Beijing,China;State Key Laboratory of Animal Nutrition,College of Animal Science and Technology,China Agricultural University,Beijing,China
Dietary zero-dimensional fullerene supplementation improves the meat quality,lipid metabolism,muscle fiber characteristics,and antioxidative status in finishing pigs
Simeng Liao;Guang Liu;Bie Tan;Ming Qi;Xin Wu;Jianjun Li;Xiaoqing Li;Changfeng Zhu;Jiamei Huang;Shuo Zhang;Yulong Tang;Yulong Yin-Laboratory of Animal Nutritional Physiology and Metabolic Process,Key Laboratory of Agro-Ecological Processes in Subtropical Region,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,Institute of Subtropical Agriculture,Chinese Academy of Sciences,Changsha,410125,China;University of Chinese Academy of Sciences,Beijing,100008,China;College of Animal Science and Technology,Hunan Agricultural University,Changsha,410128,China;Xiamen Funano New Material Technology Company,Ltd,Xiamen,361005,China;Yunnan Southwest Agriculture and Animal Husbandry Group,Kunming,650217,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。