首站-论文投稿智能助手
典型文献
一种基于变量约简的稀疏优化算法
文献摘要:
压缩感知理论能够为处理大规模信号数据提供有效支持.压缩感知中信号的稀疏表示和稀疏重构问题本质是一个稀疏优化问题,该问题是要从满足欠定方程组约束的无穷多解中找到稀疏度最大的解.鉴于此,提出一种基于变量约简求解压缩感知中稀疏优化问题的算法(VRSO),变量约简从欠定方程组约束中挖掘出变量关系,将变量分为核心变量和约简变量并用核心变量表示约简变量,通过设置核心变量中元素为0,将求解整个变量解空间上的最小化问题简化为求解约简变量解空间上的最小化问题.所提出算法通过原子与观测信号的内积大小对核心变量集合进行迭代更新,并找出优化问题的1组稀疏解.实验结果表明,所提出算法的重构误差和稀疏度误差优于匹配追踪算法、正交匹配追踪算法、迭代硬阈值算法等5种所选的对比算法,所求解的信号精度更高、稀疏度更好.
文献关键词:
变量约简;智能优化;稀疏优化;信号重构;重构误差;稀疏度误差
作者姓名:
伍国华;张雯菲;毛成辉;宋艾娟
作者机构:
中南大学交通运输工程学院,长沙410075
文献出处:
引用格式:
[1]伍国华;张雯菲;毛成辉;宋艾娟-.一种基于变量约简的稀疏优化算法)[J].控制与决策,2022(06):1550-1558
A类:
变量约简,VRSO,稀疏度误差
B类:
压缩感知理论,号数,有效支持,中信,稀疏表示,稀疏重构,问题本质,稀疏优化问题,欠定方程,方程组,无穷多解,解压缩,挖掘出,和约,中元,解空间,解约,观测信号,内积,迭代更新,稀疏解,重构误差,正交匹配追踪算法,迭代硬阈值,对比算法,所求,信号精度,智能优化,信号重构
AB值:
0.279571
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。