首站-论文投稿智能助手
典型文献
ICU住院患者重度急性呼吸窘迫综合征早期预测模型的构建
文献摘要:
背景 急性呼吸窘迫综合征(acuterespiratorydistresssyndrome,ARDS)发病率高,10%的ICU住院是由ARDS所致,临床特征通常在诱发事件后6~72 h出现,并迅速加重.其死亡率亦相当高且会随病情严重程度而增加.目的 构建一种便捷、无创的危重症ARDS早期预测模型.方法 采用麻省理工学院与飞利浦创建的eICU协作研究数据集,从中检索诊断为ARDS患者的呼吸频率、体温、心跳三种生命体征数据以及氧合指数(PaO2/FiO2).PaO2/FiO2≤100 mmHg为重度ARDS.以每个氧合指数观测点(ARDS诊断时间点)为原点,96 h为一个时间窗,应用逻辑回归、随机森林及LightGBM构建预测模型,分析诊断前6~96 h、6~48 h以及6~24 h的生命体征数据预测是否会发生重度ARDS.通过oob评分、交叉验证以及校准曲线评估模型性能,并选取2014年解放军总医院医院呼吸重症监护室的ARDS病例对模型进行外部验证.结果 从eICU数据库检索纳入232例ARDS患者共3140次氧合指数测量记录,其中PaO2/FiO2≤100 mmHg(1 mmHg=0.133 kPa)共1042次.以6~96 h、6~48 h以及6~24 h的生命体征数据各自采用逻辑回归、随机森林及LightGBM建立了9个预测模型.不同时间窗比较,6~96 h的预测准确率及AUC最高;不同模型间比较随机森林模型的诊断性能最优;6~96 h随机森林模型准确率为0.833,AUC为0.885;6~48 h、6~24 h时间窗口的AUC分别为0.815、0.806;LightGBM、逻辑回归模型的6~96 h时间窗口AUC分为0.868、0.634.各模型在解放军总医院ARDS患者中进行验证,依然是6~96 h时间窗的随机森林模型预测性能最佳,准确率为0.834,AUC为0.843.结论 基于随机森林构建的ARDS预测模型具有良好的预测能力,通过无创且易获取的心率、体温、呼吸频率三种体征指标,利用提前6~96 h时间窗数据对重度ARDS的发生进行预测,可帮助医护人员更早地进行干预和治疗.
文献关键词:
eICU数据集;ICU;机器学习;随机森林;急性呼吸窘迫综合征
作者姓名:
武俊伟;刘超;王雪;杜甲珺;李姣;谢菲
作者机构:
中国医学科学院/北京协和医学院 医学信息研究所,北京 100020;解放军总医院研究生院图书馆,北京 100853;医渡云(北京)技术有限公司,北京 100083;首都医科大学宣武医院 图书馆,北京 100053;解放军总医院第八医学中心 呼吸与危重症医学部,北京 100853
引用格式:
[1]武俊伟;刘超;王雪;杜甲珺;李姣;谢菲-.ICU住院患者重度急性呼吸窘迫综合征早期预测模型的构建)[J].解放军医学院学报,2022(11):1146-1150
A类:
acuterespiratorydistresssyndrome,oob
B类:
住院患者,重度急性呼吸窘迫综合征,早期预测模型,ARDS,病情严重程度,无创,危重症,麻省理工学院,飞利浦,eICU,研究数据,呼吸频率,心跳,生命体征,体征数据,氧合指数,PaO2,FiO2,mmHg,观测点,诊断时间,原点,应用逻辑,LightGBM,分析诊断,数据预测,交叉验证,校准曲线,模型性能,解放军总医院,呼吸重症监护室,外部验证,数据库检索,kPa,不同时间窗,预测准确率,随机森林模型,诊断性,模型准确率,时间窗口,逻辑回归模型,预测性能,预测能力,体征指标,医护人员,更早
AB值:
0.243341
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。