首站-论文投稿智能助手
典型文献
Rhamnus crenata leaf extracts exhibit anti-inflammatory activity via modulating the Nrf2/HO-1 and NF-κB/MAPK signaling pathways
文献摘要:
Objective: To elucidate the potential anti-inflammatory mechanisms of Rhamnus crenata leaf extracts using RAW264.7 cells. Methods: We used 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to measure cell viability. Nitric oxide (NO) production was measured using Griess reagent. Western blotting and RT-PCR assays were carried out for analyzing the protein and gene expressions of pro-inflammatory mediators, respectively. Moreover, PD98059 (ERK1/2 inhibitor), SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), and BAY11-7082 (NF-κB inhibitor) were used to evaluate the anti-inflammatory mechanism of Rhamnus crenata leaf extract. Results: Rhamnus crenata leaf extracts significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, IL-1β, and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Rhamnus crenata leaf extracts also suppressed LPS-induced degradation of IκB-α and nuclear accumulation of p65, which resulted in the inhibition of NF-κB activation in RAW264.7 cells. Additionally, the extracts attenuated the phosphorylation of p38, ERK1/2, and JNK in LPS-stimulated RAW264.7 cells. Moreover, HO-1 expression induced by Rhamnus crenata leaf extracts was significantly downregulated by SB230580, PD98059, SP600125 and BAY11-7082. Conclusions: Rhamnus crenata leaf extract may upregulate HO-1 expression through inhibition of p38, ERK1/2, and NF-κB activation, which may contribute to the anti-inflammatory activity of the extracts. Rhamnus crenata leaf extracts may have great potential for the development of anti-inflammatory drugs to treat acute and chronic inflammatory diseases.
文献关键词:
作者姓名:
Hyun Ji Eo;Da Som Kim;Gwang Hun Park
作者机构:
Special Forest Resources Division,Department of Forest Bio-Resources,National Institute of Forest Science,Suwon 16631,Korea;Forest Medicinal Resources Research Center,National Institute of Forest Science,Yeongju 36040,Korea
引用格式:
[1]Hyun Ji Eo;Da Som Kim;Gwang Hun Park-.Rhamnus crenata leaf extracts exhibit anti-inflammatory activity via modulating the Nrf2/HO-1 and NF-κB/MAPK signaling pathways)[J].亚太热带生物医学杂志(英文版),2022(10):430-436
A类:
SB230580
B类:
Rhamnus,crenata,leaf,extracts,exhibit,anti,inflammatory,activity,modulating,Nrf2,HO,MAPK,signaling,pathways,Objective,To,elucidate,potential,mechanisms,using,RAW264,cells,Methods,used,dimethylthiazol,diphenyl,tetrazolium,bromide,viability,Nitric,oxide,production,was,measured,Griess,reagent,blotting,assays,were,carried,out,analyzing,protein,gene,expressions,mediators,respectively,Moreover,PD98059,ERK1,inhibitor,SB203580,p38,SP600125,JNK,BAY11,evaluate,Results,significantly,inhibited,such,iNOS,COX,lipopolysaccharide,LPS,stimulated,also,suppressed,induced,degradation,nuclear,accumulation,p65,which,resulted,inhibition,activation,Additionally,attenuated,phosphorylation,by,downregulated,Conclusions,may,upregulate,through,contribute,have,great,development,drugs,treat,acute,chronic,diseases
AB值:
0.433902
相似文献
Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress
Jian WANG;Liqian SU;Lun ZHANG;Jiali ZENG;Qingru CHEN;Rui DENG;Ziyan WANG;Weidong KUANG;Xiaobao JIN;Shuiqing GUI;Yinghua XU;Xuemei LU-Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,School of Life Science and Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China;School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou 510006,China;Intensive Care Unit,Shenzhen Second People's Hospital,the First Affiliated Hospital of Shenzhen University,Shenzhen 518031,China;Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products,National Institutes for Food and Drug Control,Beijing 102629,China
Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis
Xingyan Zhang;Xiaoyan Lian;Huling Li;Wenjing Zhao;Xin Li;Fujun Zhou;Yutong Zhou;Tao Cui;Yuli Wang;Changxiao Liu-Key Laboratory of Quality-marker of Traditional Chinese Medicines,Tianjin Institute of Pharmaceutical Research Co.,Ltd.,Tianjin 300462,China;Center for Drug Evaluation,National Medical Products Administration,Beijing 100022,China;Department of Pharmacology,Tianjin Medical University,Tianjin 300070,China;State Key Laboratory of Drug Delivery Technology and Pharmacokinetics,Tianjin Institute of Pharmaceutical Research Co.,Ltd.,Tianjin 300462,China;Key Laboratory of Systems Bioengineering(Ministry of Education),School of Chemistry Engineering and Technology,Tianjin University,Tianjin 300072,China;Pharmaceuticai Armaceuticai DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Researchinstitute,Tianjin 300457,China;Tianjin Key Laboratory of Quality Control in Chinese Medicine,Tianjin 300457,China;Research Unit for Drug Metabolism,Chinese Academy of Medical Sciences,Beijing 100730,China
Pharmacological inhibition of MyD88 suppresses inflammation in tubular epithelial cells and prevents diabetic nephropathy in experimental mice
Qiu-yan Zhang;Su-jing Xu;Jian-chang Qian;Li-bin Yang;Peng-qin Chen;Yi Wang;Xiang Hu;Ya-li Zhang;Wu Luo;Guang Liang-Chemical Biology Research Center,School of Pharmaceutical Sciences,Wenzhou Medical University,Wenzhou 325035,China;Medical Research Center,The First Affiliated Hospital,Wenzhou Medical University,Wenzhou 325035,China;School and Hospital of Stomatology,Wenzhou Medical University,Wenzhou 325027,China;Department of Endocrinology,The First Affiliated Hospital,Wenzhou Medical University,Wenzhou 325035,China;School of Pharmaceutical Sciences,Hangzhou Medical College,Hangzhou 311399,China;Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325001,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。