首站-论文投稿智能助手
典型文献
Fluo-Fluo translation based on deep learning
文献摘要:
Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,which plays an important role in understanding the subcellular structure.However,fluorescence microscopy has some limitations such as the risk of non-specific cross labeling in multi-labeled fluorescent staining and limited number of fluo-rescence labels due to spectral overlap.This paper proposes a deep learning-based fluorescence to fluorescence[Fluo-Fluo]translation method,which uses a conditional generative adversarial network to predict a fluorescence image from another fluorescence image and further realizes the multi-label fluorescent staining.The cell types used include human motor neurons,human breast cancer cells,rat cortical neurons,and rat cardiomyocytes.The effectiveness of the method is verified by successfully generating virtual fluorescence images highly similar to the true fluorescence images.This study shows that a deep neural network can implement Fluo-Fluo translation and describe the localization relationship between subcellular structures labeled with different fluorescent markers.The proposed Fluo-Fluo method can avoid non-specific cross labeling in multi-label fluorescence staining and is free from spectral overlaps.In theory,an unlimited number of fluorescence images can be predicted from a single fluorescence image to characterize cells.
文献关键词:
作者姓名:
Zhengfen Jiang;Boyi Li;Tho N.H.T.Tran;Jiehui Jiang;Xin Liu;Dean Ta
作者机构:
School of Communication&Information Engineering,Shanghai University,Shanghai 200444,China;Academy for Engineering&Technology,Fudan University,Shanghai 200433,China;State Key Laboratory of Medical Neurobiology,Fudan University,Shanghai 200433,China;Center for Biomedical Engineering,Fudan University,Shanghai 200433,China
引用格式:
[1]Zhengfen Jiang;Boyi Li;Tho N.H.T.Tran;Jiehui Jiang;Xin Liu;Dean Ta-.Fluo-Fluo translation based on deep learning)[J].中国光学快报(英文版),2022(03):82-88
A类:
B类:
translation,deep,learning,Fluorescence,microscopy,technology,uses,fluorescent,dyes,provide,highly,specific,visualization,components,which,plays,important,role,understanding,subcellular,However,fluorescence,has,some,limitations,such,risk,cross,labeling,multi,labeled,staining,number,labels,due,spectral,This,paper,proposes,method,conditional,generative,adversarial,network,from,another,further,realizes,types,used,include,human,motor,neurons,breast,cancer,cells,cortical,cardiomyocytes,effectiveness,verified,by,successfully,generating,virtual,images,similar,true,study,shows,that,neural,implement,describe,localization,relationship,between,structures,different,markers,proposed,avoid,free,overlaps,In,theory,unlimited,predicted,single,characterize
AB值:
0.485339
相似文献
Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells
Meiling Guan;Miaoyan Wang;Karl Zhanghao;Xu Zhang;Meiqi Li;Wenhui Liu;Jing Niu;Xusan Yang;Long Chen;Zhenli Jing;Micheal Q.Zhang;Dayong Jin;Peng Xi;Juntao Gao-Department of Biomedical Engineering,College of Future Technology,Peking University,Beijing 100871,China;UTS-SUStech Joint Research Centre for Biomedical Materials & Devices,Department of Biomedical Engineering,College of Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,China;MOE Key Laboratory of Bioinformatics,Bioinformatics Division,Center for Synthetic & Systems Biology,BNRist,Beijing,China;Center for Synthetic & Systems Biology; Department of Automation,Tsinghua University,Beijing 100084,China;Beijing Institute of Collaborative Innovation,Beijing 100094,China;Department of Biological Sciences and Center for System Biology,The University of Texas at Dallas,Richardson 75080,USA;School of Medical Sciences,Tsinghua University,Beijing 100084,China;Institute for Biomedical Materials and Devices (IBMD),Faculty of Science,University of Technology Sydney,Sydney,NSW 2007,Australia;National Biomedical Imaging Center,Peking University,Beijing 100871,China
Deep learning acceleration of multiscale superresolution localization photoacoustic imaging
Jongbeom Kim;Gyuwon Kim;Lei Li;Pengfei Zhang;Jin Young Kim;Yeonggeun Kim;Hyung Ham Kim;Lihong V.Wang;Seungchul Lee;Chulhong Kim-Departments of Electrical Engineering,Mechanical Engineering,Convergence IT Engineering,and Interdisciplinary Bioscience and Bioengineering,Graduate School of Artificial Intelligence,Medical Device Innovation Center,Pohang University of Science and Technology(POSTECH),77 Cheongam-ro,Nam-gu,Pohang,Gyeongbuk 37673,Republic of Korea;Caltech Optical Imaging Laboratory,Andrew and Peggy Cherng Department of Medical Engineering,Department of Electrical Engineering,California Institute of Technology,1200 E.California Blvd.,MC 138-78,Pasadena,CA 91125,USA;School of Precision Instruments and Optoelectronics Engineering,Tianjin University,92 Weijin Road,Nankai District,Tianjin 300072,China;Opticho,532,CHANGeUP GROUND,87 Cheongam-ro,Nam-gu,Pohang,Gyeongsangbuk 37673,Republic of Korea
Axial gradient excitation accelerates volumetric imaging of two-photon microscopy
YUFENG GAO;XIANYUAN XIA;LINA LIU;TING WU;TINGAI CHEN;JIA YU;ZHILI XU;LIANG WANG;FEI YAN;ZHUO DU;JUN CHU;YANG ZHAN;BO PENG;HUI LI;WEI ZHENG-Research Center for Biomedical Optics and Molecular Imaging,Shenzhen Key Laboratory for Molecular Imaging,Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;CAS Key Laboratory of Health Informatics,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Paul C.Lauterbur Research Center for Biomedical Imaging,Institute of Biomedical and Health Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;State Key Laboratory of Molecular Developmental Biology,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;Key Laboratory of Genetic Network Biology,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;Brain Cognition and Brain Disease Institute,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Centre for Micro Nano Systems and Bionic Medicine,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
Directional radiation enhancement of nanowire quantum dots based on line-array plasmonic antenna coupling
Peihang Li;Peng Yu;Jiachen Sun;Zhimin Jing;Jiang Wu;Lucas V. Besteiro;Roberto Caputo;Arup Neogi;Hongxing Xu;Zhiming Wang-Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China;College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China;CINBIO, Universidade de Vigo, Vigo 36310, Spain;Physics Department, University of Calabria, Rende I-87036, Italy;School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan 430072, China;Institute for Advanced Study, Chengdu University, Chengdu 610106, China;e-mail: arup@uestc.edu.cn;e-mail: zhmwang@uestc.edu.cn
Continuous subcellular resolution three-dimensional imaging on intact macaque brain
Can Zhou;Xiaoquan Yang;Shihao Wu;Qiuyuan Zhong;Ting Luo;Anan Li;Guangcai Liu;Qingtao Sun;Pan Luo;Lei Deng;Hong Ni;Chaozhen Tan;Jing Yuan;Qingming Luo;Xintian Hu;Xiangning Li;Hui Gong-Britton Chance Center for Biomedical Photonics,Wuhan National Laboratory for Optoelectronics,MoE Key Laboratory for Biomedical Photonics,Huazhong University of Science and Technology,Wuhan 430074,China;HUST-Suzhou Institute for Brainsmatics,JITRI,Suzhou 215123,China;Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China;Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province,Kunming Institute of Zoology,Kunming 650223,China;CAS Center for Excellence in Brain Science and Intelligence Technology,Chinese Academy of Sciences,Shanghai 200031,China;UST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China;Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China;HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China;CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy
Qian Jia;Ruili Zhang;Yongdong Wang;Haohao Yan;Zheng Li;Yanbin Feng;Yu Ji;ZUO Yang;Yang Yang;Kanyi Pu;Zhongliang Wang-Laboratory of Molecular Imaging and Translational Medicine (MITM),Engineering Research Center of Molecular & Neuroimaging,Ministry of Education,School of Life Science and Technology,Xidian University,Xi'an 710126,China;Department of Thoracic Surgery,Shanghai Pulmonary Hospital,School of Medicine,Tongji University,Shanghai 200433,China;School of Materials Science and Engineering,Tongji University,Shanghai 201804,China;School of Chemical and Biomedical Engineering,Nanyang Technological University,Singapore 637457,Singapore;Academy of Advanced Interdisciplinary Research,Xidian University,Xi'an 710071,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。