典型文献
基于自然语言处理的材料领域知识图谱构建方法
文献摘要:
如何将材料领域知识与机器学习技术相结合是材料智能研究迫切需要解决的问题.知识图谱(knowledge graphs,KGs)作为一种高效的知识组织模型,可以有效地对材料领域知识进行表示、组织和推理,从而提升材料机器学习算法的智能水平.研究了基于自然语言处理技术的材料领域知识自动获取方法,提出了基于双向门控循环单元-图神经网络-条件随机场(bidirectional-gated recurrent unit-graph neural network-conditional random field,Bi-GRU-GNN-CRF)的材料实体关系联合抽取方法,以及基于改进TextRank算法的材料工艺知识抽取方法,实现了从专利、论文等材料文献中自动获取材料实体、关系、工艺流程等材料领域知识.实验结果表明,所提出的材料知识获取方法具有较好的精度和召回率,能够有效提升材料知识图谱的知识覆盖度.基于该方法构建的材料领域知识图谱的知识覆盖率达到了80%,能够为材料智能研发提供更加全面的知识支撑.同时,构建了非调制特殊钢、铝基复合材料、热障陶瓷涂层材料3个材料领域知识图谱,并进行了应用探索,进一步验证了知识图谱为材料研发提供知识支撑的可能性.
文献关键词:
材料智能;自然语言处理;知识图谱
中图分类号:
作者姓名:
魏晓;王晓鑫;陈永琪;张惠然
作者机构:
上海大学计算机工程与科学学院,上海200444;上海大学材料基因组工程研究院材料信息与数据科学中心,上海200444;之江实验室,浙江杭州311100
文献出处:
引用格式:
[1]魏晓;王晓鑫;陈永琪;张惠然-.基于自然语言处理的材料领域知识图谱构建方法)[J].上海大学学报(自然科学版),2022(03):386-398
A类:
B类:
材料领域,领域知识图谱,知识图谱构建,构建方法,将材,机器学习技术,技术相结合,材料智能,knowledge,graphs,KGs,知识组织,机器学习算法,自然语言处理技术,获取方法,双向门控循环单元,图神经网络,条件随机场,bidirectional,gated,recurrent,unit,neural,network,conditional,random,field,Bi,GRU,GNN,CRF,实体关系联合抽取,联合抽取方法,TextRank,材料工艺,工艺知识,知识抽取,取材,知识获取,召回率,覆盖度,特殊钢,铝基复合材料,热障,陶瓷涂层,涂层材料,应用探索,材料研发
AB值:
0.436865
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。