首站-论文投稿智能助手
典型文献
Assessing canopy nitrogen and carbon content in maize by canopy spectral reflectance and uninformative variable elimination
文献摘要:
Assessing canopy nitrogen content(CNC)and canopy carbon content(CCC)of maize by hyperspectral remote sensing data permits estimating cropland productivity,protecting farmland ecology,and investi-gating the nitrogen and carbon cycles in the atmosphere.This study aimed to assess maize CNC and CCC using canopy hyperspectral information and uninformative variable elimination(UVE).Vegetation indices(VIs)and wavelet functions were adopted for estimating CNC and CCC under varying water and nitrogen regimes.Linear,nonlinear,and partial least squares(PLS)regression models were fitted to VIs and wavelet functions to estimate CNC and CCC,and were evaluated for their prediction accuracy.UVE was used to eliminate uninformative variables,improve the prediction accuracy of the models,and simplify the PLS regression models(UVE-PLS).For estimating CNC and CCC,the normalized difference vegetation index(NDVI,based on red edge and NIR wavebands)yielded the highest correlation coeffi-cients(r>0.88).PLS regression models showed the lowest root mean square error(RMSE)among all models.However,PLS regression models required nine VIs and four wavelet functions,increasing their complexity.UVE was used to retain valid spectral parameters and optimize the PLS regression models.UVE-PLS regression models improved validation accuracy and resulted in more accurate CNC and CCC than the PLS regression models.Thus,canopy spectral reflectance integrated with UVE-PLS can accurately reflect maize leaf nitrogen and carbon status.
文献关键词:
作者姓名:
Zhonglin Wang;Junxu Chen;Jiawei Zhang;Xianming Tan;Muhammad Ali Raza;Jun Ma;Yan Zhu;Feng Yang;Wenyu Yang
作者机构:
College of Agronomy,Sichuan Agricultural University,Chengdu 611130,Sichuan,China;Sichuan Engineering Research Center for Crop Strip Intercropping System,Chengdu 611130,Sichuan,China;Rice Research Institute,Sichuan Agricultural University,Chengdu 611130,Sichuan,China;National Engineering and Technology Center for Information Agriculture,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China
引用格式:
[1]Zhonglin Wang;Junxu Chen;Jiawei Zhang;Xianming Tan;Muhammad Ali Raza;Jun Ma;Yan Zhu;Feng Yang;Wenyu Yang-.Assessing canopy nitrogen and carbon content in maize by canopy spectral reflectance and uninformative variable elimination)[J].作物学报(英文版),2022(05):1224-1238
A类:
uninformative
B类:
Assessing,canopy,nitrogen,carbon,content,maize,by,reflectance,elimination,CNC,CCC,hyperspectral,remote,sensing,data,permits,estimating,cropland,productivity,protecting,farmland,ecology,investi,gating,cycles,atmosphere,This,study,aimed,assess,using,information,UVE,Vegetation,indices,VIs,wavelet,functions,were,adopted,under,varying,water,regimes,Linear,nonlinear,partial,least,squares,PLS,regression,models,fitted,estimate,evaluated,their,prediction,accuracy,was,used,eliminate,variables,simplify,For,normalized,difference,vegetation,NDVI,edge,NIR,wavebands,yielded,highest,correlation,coeffi,cients,showed,lowest,root,mean,error,RMSE,among,all,However,required,nine,four,increasing,complexity,retain,parameters,optimize,improved,validation,resulted,more,than,Thus,integrated,accurately,leaf,status
AB值:
0.473181
相似文献
Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo-State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing,100093,China;University of Chinese Academy of Sciences,Beijing,100049,China;Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Nanjing Agricultural University,Nanjing,210095,China;Department of Environmental Sciences,Policy and Management,University of California,Berkeley,CA,94720-3114,USA;Division of Agriculture and Natural Resources,University of California,Berkeley,CA,94720-3114,USA;College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi,Xinjiang,830017,China;Xinjiang Lidar Applied Engineering Technology Research Center,Urumqi,Xinjiang,830002,China;Xinjiang Land and Resources Information Center,Urumqi,Xinjiang,830002,China;Institute of Remote Sensing and Geographic Information System,School of Earth and Space Sciences,Peking University,Beijing,100871,China
Modelling fuel loads of understorey vegetation and forest floor components in pine stands in NW Spain
José A.Vega;Stéfano Arellano-Pérez;Juan Gabriel álvarez-González;Cristina Fernández;Enrique Jiménez;Pedro Cui?as;José María Fernández-Alonso;Daniel J.Vega-Nieva;Fernando Castedo-Dorado;Cecilia Alonso-Rego;Teresa Fontúrbel;Ana Daría Ruiz-González-Centro de Investigación Forestal de Lourizán,PO Box 127,36080,Pontevedra,Spain;Unidad de Gestión Ambiental y Forestal Sostenible(UXAFORES),Departamento de Ingeniería Agroforestal,Escuela Politécnica Superior de Ingeniería,Universidad de Santiago de Compostela,Campus Universitario s/n,27002,Lugo,Spain;Facultad de Ciencias Forestales,Universidad Juarez del Estado de Durango,Río Papaloapan y Blvd.Durango s/n,Col.Valle del Sur,34120,Durango,Mexico;Departamento de Ingeniería y Ciencias Agrarias,Universidad de León,Campus de Ponferrada,24401,Ponferrada,Spain
Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China
Guannv Gao;Xueman Huang;Haocheng Xu;Yi Wang;Weijun Shen;Wen Zhang;Jinliu Yan;Xiaoyan Su;Shushou Liao;Yeming You-Guangxi Key Laboratory of Forest Ecology and Conservation,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,College of Forestry,Guangxi University,Nanning 530004,China;Guangxi Youyiguan Forest Ecosystem Research Station,Pingxiang,532600,Guangxi,China;School of Agriculture,Shenzhen Campus of Sun Yat-sen University,Shenzhen,518107,Guangdong China;Institute of Resources and Environment,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo&Rattan Science and Technology,International Centre for Bamboo and Rattan,Beijing 100102,China;Experimental Centre of Tropical Forestry,Chinese Academy of Forestry,Pingxiang 532600,Guangxi,China
Measuring loblolly pine crowns with drone imagery through deep learning
Xiongwei Lou;Yanxiao Huang;Luming Fang;Siqi Huang;Haili Gao;Laibang Yang;Yuhui Weng;I.-K.uai Hung-School of Information Engineering,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;Key Laboratory of State Forestry and Grassland Administration On Forestry Sensing Technology and Intelligent Equipment,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;Jiyang College of Zhejiang A & F University,Zhuji 311800,Zhejiang,People's Republic of China;College of Forestry and Biotechnology,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;College of Forestry and Agriculture,Stephen F.Austin State University,Nacogdoches,TX 75962,USA
Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions
Khabat KHOSRAVI;Phuong T.T.NGO;Rahim BARZEGAR;John QUILTY;Mohammad T.AALAMI;Dieu T.BUI-Department of Watershed Management Engineering,Ferdowsi University of Mashhad,Mashhad 93 Iran;Department of Earth and Environment,Florida International University,Miami 33199 USA;Institute of Research and Development,Duy Tan University,Da Nang 550000 Vietnam;Department of Bioresource Engineering,McGill University,Ste Anne de Bellevue QC H9X Canada;Faculty of Civil Engineering,University of Tabriz,Tabriz 51 Iran;Department of Civil and Environmental Engineering,University of Waterloo,Waterloo N2L 3G1 Canada;Department of Business and IT,University of South-Eastern Norway,Notodden 3603 Norway
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。