首站-论文投稿智能助手
典型文献
Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China
文献摘要:
Background:Process-based models are widely used to simulate forest productivity,but complex parameterization and calibration challenge the application and development of these models.Sensitivity analysis of numerous parameters is an essential step in model calibration and carbon flux simulation.However,parameters are not dependent on each other,and the results of sensitivity analysis usually vary due to different forest types and regions.Hence,global and representative sensitivity analysis would provide reliable information for simple calibration.Methods:To determine the contributions of input parameters to gross primary productivity (GPP) and net primary productivity (NPP),regression analysis and extended Fourier amplitude sensitivity testing (EFAST) were con-ducted for Biome-BGCMuSo to calculate the sensitivity index of the parameters at four observation sites under climate gradient from ChinaFLUX.Results:Generally,GPP and NPP were highly sensitive to C:Nleaf (C:N of leaves),Wint (canopy water interception coefficient),k (canopy light extinction coefficient),FLNR (fraction of leaf N in Rubisco),MRpern (coefficient of linear relationship between tissue N and maintenance respiration),VPDf (vapor pressure deficit complete conductance reduction),and SLA1 (canopy average specific leaf area in phenological phase 1) at all observation sites.Various sensitive parameters occurred at four observation sites within different climate zones.GPP and NPP were particularly sensitive to FLNR,SLA1 and Wint,and C:Nleaf in temperate,alpine and subtropical zones,respectively.Conclusions:The results indicated that sensitivity parameters of China's forest ecosystems change with climate gradient.We found that parameter calibration should be performed according to plant functional type (PFT),and more attention needs to be paid to the differences in climate and environment.These findings contribute to determining the target parameters in field experiments and model calibration.
文献关键词:
作者姓名:
Hongge Ren;Li Zhang;Min Yan;Xin Tian;Xingbo Zheng
作者机构:
Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing,100094,China;University of Chinese Academy of Sciences,Beijing,100049,China;Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing,100091,China;Key Laboratory of Forest Ecology and Management Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang,110016,China;Research Station of Changbai Mountain Forest Ecosystems,Chinese Academy of Sciences,Antu,133613,Jilin,China
引用格式:
[1]Hongge Ren;Li Zhang;Min Yan;Xin Tian;Xingbo Zheng-.Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China)[J].森林生态系统(英文版),2022(01):111-123
A类:
BGCMuSo,Nleaf,Wint,FLNR,MRpern,VPDf,SLA1
B类:
Sensitivity,analysis,Biome,gross,net,primary,productivity,typical,forests,Background,Process,models,widely,used,simulate,complex,parameterization,calibration,challenge,application,development,these,numerous,parameters,essential,step,carbon,flux,simulation,However,not,dependent,each,other,results,sensitivity,usually,vary,due,different,types,regions,Hence,global,representative,would,provide,reliable,information,simple,Methods,To,determine,contributions,input,GPP,NPP,regression,extended,Fourier,amplitude,testing,EFAST,were,ducted,calculate,four,observation,sites,under,climate,gradient,from,ChinaFLUX,Results,Generally,highly,sensitive,leaves,canopy,water,interception,coefficient,light,extinction,fraction,Rubisco,linear,relationship,between,tissue,maintenance,respiration,vapor,pressure,deficit,complete,conductance,reduction,average,specific,area,phenological,phase,Various,occurred,within,zones,particularly,temperate,alpine,subtropical,respectively,Conclusions,indicated,that,ecosystems,change,We,found,should,performed,according,plant,functional,PFT,more,attention,needs,paid,differences,environment,These,findings,contribute,determining,target,field,experiments
AB值:
0.5283
相似文献
Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China
HUANG Xiaoran;BAO Anming;GUO Hao;MENG Fanhao;ZHANG Pengfei;ZHENG Guoxiong;YU Tao;QI Peng;Vincent NZABARINDA;DU Weibing-State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China;Research Center for Ecology and Environment of Central Asia,Chinese Academy of Sciences,Urumqi 830011,China;China-Pakistan Joint Research Center on Earth Sciences,Chinese Academy of Sciences and Higher Education Commission,Islamabad 45320,Pakistan;School of Geography and Tourism,Qufu Normal University,Rizhao 276800,China;College of Geographical Science,Inner Mongolia Normal University,Hohhot 010022,China;Xuchang University,Xuchang 461000,China;Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China
Response of soil respiration to environmental and photosynthetic factors in different subalpine forest?cover types in a loess alpine hilly region
Yuanhang Li;Sha Lin;Qi Chen;Xinyao Ma;Shuaijun Wang;Kangning He-School of Soil and Water Conservation,Key Laboratory of State Forestry Administration On Soil and Water Conservation,Beijing Forestry University,Beijing 100083, People's Republic of China;Beijing Engineering Research Center of Soil and Water Conservation,Beijing Forestry University,Beijing 100083, People's Republic of China;Engineering Research Center of Forestry Ecological Engineering,Ministry of Education,Beijing Forestry University,Beijing 100083,People's Republic of China;North China Power Engineering Co.,Ltd.of China Power Engineering Consulting Group,Changchun 130021, People's Republic of China;Power China Huadong Engineering Corporation Limited, Hangzhou 311122,People's Republic of China
Machine learning-based estimates of aboveground biomass of subalpine forests using Landsat 8 OLI and Sentinel-2B images in the Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau
Ke Luo;Yufeng Wei;Jie Du;Liang Liu;Xinrui Luo;Yuehong Shi;Xiangjun Pei;Ningfei Lei;Ci Song;Jingji Li;Xiaolu Tang-College of Earth Science,Chengdu University of Technology,Chengdu 610059,People's Republic of China;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,People's Republic of China;Jiuzhaigou Nature Reserve Administration,Aba Tibetan and Qiang Autonomous Prefecture,Jiuzhai 623402, People's Republic of China;College of Ecology and Environment,Chengdu University of Technology,Chengdu 610059,People's Republic of China;State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution,Chengdu Univer-Sity of Technology,Chengdu 610059, People's Republic of China;China Railway,Eryuan Engineering Group Co.Ltd, Chengdu 610031,People's Republic of China
Size fractions of organic matter pools influence their stability:Application of the Rock-Eval? analysis to beech forest soils
David SEBAG;Eric P.VERRECCHIA;Thierry ADATTE;Micha?l AUBERT;Guillaume CAILLEAU;Thibaud DECA?NS;Isabelle KOWALEWSKI;Jean TRAP;Fabrice BUREAU;Micka?l HEDDE-Normandie Univ,Université de Rouen Normandie(UNIROUEN),Centre National de la Recherche Scientifique(CNRS),M2C,Rouen 76000(France);Institute of Earth Surface Dynamics(IDYST),Geopolis,University of Lausanne,Lausanne 1015(Switzerland);Institut Fran?ais du Pétrole Energies Nouvelles(IFPEN),Earth Sciences and Environmental Technologies Division,Rueil-Malmaison 92852(France);Institute of Earth Sciences(ISTE),Geopolis,University of Lausanne,Lausanne 1015(Switzerland);Normandie Univ,Université de Rouen Normandie(UNIROUEN),Institut National de Recherche pour l Agriculture,l'Alimentation et l'Environnement(INRAE),Laboratoire étude et Compréhension de la bioDIVersité(ECODIV),Rouen 76000(France);Laboratory of Microbiology,Institute of Biology,University of Neuchatel,Neuchatel 2000(Switzerland);Centre d'Ecologie Fonctionnelle et Evolutive(CEFE),Université de Montpellier,CNRS,Ecole Pratique des Hautes Etudes(EPHE),Institut de Recherche pour le Développement(IRD),Montpellier 34000(France);Eco&Sols,INRAE,IRD,Université de Montpellier,Montpellier 34000(France)
Extreme fire weather is the major driver of severe bushfires in southeast Australia
Bin Wang;Allan C.Spessa;Puyu Feng;Xin Hou;Chao Yue;Jing-Jia Luo;Philippe Ciais;Cathy Waters;Annette Cowie;Rachael H.Nolan;Tadas Nikonovas;Huidong Jin;Henry Walshaw;Jinghua Wei;Xiaowei Guo;De Li Liu;Qiang Yu-State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Northwest A&F University,Yangling 712100,China;New South Wales Department of Primary Industries,Wagga Wagga Agricultural Institute,Wagga Wagga 2650,Australia;Department of Geography,College of Science,Swansea University,Singleton Park,Swansea SA2 8PP,UK;College of Land Science and Technology,China Agricultural University,Beijing 100193,China;College of Natural Resources and Environment,Northwest A&F University,Yangling 712100,China;Institute for Climate and Application Research(ICAR)/Key Laboratory of Meteorological Disaster of Ministry of Education(KLME),Nanjing University of Information Science and Technology,Nanjing 210044,China;Laboratoire des Sciences du Climat et de l'Environnement,CEA-CNRS-UVSQ,Gif sur Yvette F-91191,France;New South Wales Department of Primary Industries,Dubbo 2830,Australia;New South Wales Department of Primary Industries,Armidale 2351,Australia;School of Environmental and Rural Science,University of New England,Armidale 2351,Australia;Hawkesbury Institute for the Environment,Western Sydney University,Penrith 2751,Australia;CSIRO Data61,Canberra 2601,Australia;Python Charmers Pty Ltd,Hawthorn 3122,Australia;Key Laboratory of Adaptation and Evolution of Plateau Biota,Northwest Institute of Plateau Biology,Chinese Academy of Sciences,Xining 810008,China;Climate Change Research Centre,University of New South Wales,Sydney 2052,Australia;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。