FAILED
首站-论文投稿智能助手
典型文献
High?throughput phenotyping of two plant?size traits of Eucalyptus species using neural networks
文献摘要:
In forest modeling to estimate the volume of wood, artificial intelligence has been shown to be quite effi-cient, especially using artificial neural networks (ANNs). Here we tested whether diameter at breast height (DBH) and the total plant height (Ht) of eucalyptus can be pre-dicted at the stand level using spectral bands measured by an unmanned aerial vehicle (UAV) multispectral sensor and vegetation indices. To do so, using the data obtained by the UAV as input variables, we tested different configurations (number of hidden layers and number of neurons in each layer) of ANNs for predicting DBH and Ht at stand level for different Eucalyptus species. The experimental design was randomized blocks with four replicates, with 20 trees in each experimental plot. The treatments comprised five Eucalyptus species (E. camaldulensis, E. uroplylla, E. saligna, E. gran-dis, and E. urograndis) and Corymbria citriodora. DBH and Ht for each plot at the stand level were measured seven times in separate overflights by the UAV, so that the multispectral sensor could obtain spectral bands to calculate vegetation indices (VIs). ANNs were then constructed using spectral bands and VIs as input layers, in addition to the categorical variable (species), to predict DBH and Ht at the stand level simultaneously. This report represents one of the first appli-cations of high-throughput phenotyping for plant size traits in Eucalyptus species. In general, ANNs containing three hidden layers gave better statistical performance (higher esti-mated r, lower estimated root mean squared error–RMSE) due to their greater capacity for self-learning. Among these ANNs, the best contained eight neurons in the first layer, seven in the second, and five in the third (8 ? 7 ? 5). The results reported here reveal the potential of using the gener-ated models to perform accurate forest inventories based on spectral bands and VIs obtained with a UAV multispectral sensor and ANNs, reducing labor and time.
文献关键词:
作者姓名:
Marcus Vinicius Vieira Borges;Janielle de Oliveira Garcia;Tays Silva Batista;Alexsandra Nogueira Martins Silva;Fabio Henrique Rojo Baio;Carlos Ant?nio da Silva Junior;Gileno Brito de Azevedo;Glauce Taís de Oliveira Sousa Azevedo;Larissa Pereira Ribeiro Teodoro;Paulo Eduardo Teodoro
作者机构:
Federal University of Mato Grosso Do Sul(UFMS), Chapad?o Do Sul,Mato Grosso Do Sul 79560000,Brazil;Department of Geography,State University of Mato Grosso (UNEMAT),Sinop,Mato Grosso 78555000,Brazil
引用格式:
[1]Marcus Vinicius Vieira Borges;Janielle de Oliveira Garcia;Tays Silva Batista;Alexsandra Nogueira Martins Silva;Fabio Henrique Rojo Baio;Carlos Ant?nio da Silva Junior;Gileno Brito de Azevedo;Glauce Taís de Oliveira Sousa Azevedo;Larissa Pereira Ribeiro Teodoro;Paulo Eduardo Teodoro-.High?throughput phenotyping of two plant?size traits of Eucalyptus species using neural networks)[J].林业研究(英文版),2022(02):591-599
A类:
camaldulensis,uroplylla,saligna,urograndis,Corymbria,citriodora,overflights
B类:
High,throughput,phenotyping,plant,size,traits,Eucalyptus,species,using,neural,networks,In,forest,modeling,volume,wood,artificial,intelligence,has,been,shown,quite,effi,cient,especially,ANNs,Here,tested,whether,diameter,breast,height,DBH,total,Ht,eucalyptus,can,dicted,stand,level,bands,measured,by,unmanned,aerial,vehicle,UAV,multispectral,sensor,vegetation,indices,To,data,obtained,input,variables,different,configurations,number,hidden,layers,neurons,each,predicting,experimental,design,was,randomized,blocks,four,replicates,trees,plot,treatments,comprised,five,were,seven,times,separate,that,could,calculate,VIs,then,constructed,addition,categorical,simultaneously,This,represents,one,first,appli,cations,general,containing,three,gave,better,statistical,performance,higher,lower,estimated,root,mean,squared,error,RMSE,due,their,greater,capacity,self,learning,Among,these,best,contained,second,third,results,reported,here,reveal,potential,models,accurate,inventories,reducing,labor
AB值:
0.447235
相似文献
Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province,China
Mengyu Wang;Yi Zheng;Chengquan Huang;Ran Meng;Yong Pang;Wen Jia;Jie Zhou;Zehua Huang;Linchuan Fang;Feng Zhao-Key Laboratory of Geographical Process Analysis&Simulation of Hubei Province/College of Urban and Environmental Sciences,Central China Normal University,Wuhan,430079,China;Department of Geographical Sciences,University of Maryland,College Park,MD,20742,USA;Macro Agriculture Research Institute,Interdisciplinary Sciences Research Institute,College of Resources and Environment,Huazhong Agricultural University,Wuhan,430070,China;Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing,100091,China;Key Laboratory of Forestry Remote Sensing and Information System,National Forestry and Grassland Administration,Beijing,100091,China
Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo-State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing,100093,China;University of Chinese Academy of Sciences,Beijing,100049,China;Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Nanjing Agricultural University,Nanjing,210095,China;Department of Environmental Sciences,Policy and Management,University of California,Berkeley,CA,94720-3114,USA;Division of Agriculture and Natural Resources,University of California,Berkeley,CA,94720-3114,USA;College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi,Xinjiang,830017,China;Xinjiang Lidar Applied Engineering Technology Research Center,Urumqi,Xinjiang,830002,China;Xinjiang Land and Resources Information Center,Urumqi,Xinjiang,830002,China;Institute of Remote Sensing and Geographic Information System,School of Earth and Space Sciences,Peking University,Beijing,100871,China
Modelling fuel loads of understorey vegetation and forest floor components in pine stands in NW Spain
José A.Vega;Stéfano Arellano-Pérez;Juan Gabriel álvarez-González;Cristina Fernández;Enrique Jiménez;Pedro Cui?as;José María Fernández-Alonso;Daniel J.Vega-Nieva;Fernando Castedo-Dorado;Cecilia Alonso-Rego;Teresa Fontúrbel;Ana Daría Ruiz-González-Centro de Investigación Forestal de Lourizán,PO Box 127,36080,Pontevedra,Spain;Unidad de Gestión Ambiental y Forestal Sostenible(UXAFORES),Departamento de Ingeniería Agroforestal,Escuela Politécnica Superior de Ingeniería,Universidad de Santiago de Compostela,Campus Universitario s/n,27002,Lugo,Spain;Facultad de Ciencias Forestales,Universidad Juarez del Estado de Durango,Río Papaloapan y Blvd.Durango s/n,Col.Valle del Sur,34120,Durango,Mexico;Departamento de Ingeniería y Ciencias Agrarias,Universidad de León,Campus de Ponferrada,24401,Ponferrada,Spain
Genotype×tillage interaction and the performance of winter bread wheat genotypes in temperate and cold dryland conditions
Ebrahim ROOHI;Reza MOHAMMADI;Abdoul Aziz NIANE;Javad VAFABAKHSH;Mozaffar ROUSTAEE;Mohammad Reza JALAL KAMALI;Shahriar SOHRABI;Shahriar FATEHI;Hossain TARIMORADI-Horticulture and Crop Science Research Department,Kurdistan Agricultural and Natural Resources Research and Education Center,Agricultural Research,Education and Extension Organization(AREEO),Sanandaj 66169-36311,Iran;Dry Land Agricultural Research Institute(DARI),Sararood Campus,AREEO,Kermanshah 67441-61377,Iran;International Center for Agriculture Research in the Dry Area(ICARDA),Dubai 13979,United Arab Emirates;Seed and Plant Improvement Research Department,Khorasan Razavi Agricultural and Natural Resources Research and Education Center,AREEO,Mashhad 91859-86111,Iran;Cereal Research Department,DARI,AREEO,Maragheh 119,Iran;International Maize and Wheat Improvement Center(CIMMYT),Karaj 31585-4119,Iran;Kurdistan Jehade Agricultural Organization,Sanandaj 66169-35383,Iran
Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery
Guomin Shao;Wenting Han;Huihui Zhang;Yi Wang;Liyuan Zhang;Yaxiao Niu;Yu Zhang;Pei Cao-College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling 712100,Shaanxi,China;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture,Yangling 712100,Shaanxi,China;Institute of Water-Saving Agriculture in Arid Areas of China,Northwest A&F University,Yangling 712100,Shaanxi,China;Water Management and Systems Research Unit,USDA-ARS,2150 Centre Avenue,Bldg.D.,Fort Collins,CO 80526,USA;College of Information,Xi'an University of Finance and Economics,Xi'an 710100,Shaanxi,China;Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,Shaanxi,China;University of Chinese Academy of Sciences,Beijing 100049,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。