首站-论文投稿智能助手
典型文献
Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
文献摘要:
Accurate estimates of forest aboveground biomass(AGB)are essential for global carbon cycle studies and have widely relied on approaches using spectral and structural information of forest canopies extracted from various remote sensing datasets.However,combining the advantages of active and passive data sources to improve estimation accuracy remains challenging.Here,we proposed a new approach for forest AGB modeling based on allometric relationships and using the form of power-law to integrate structural and spectral information.Over 60 km2 of drone light detection and ranging(LiDAR)data and 1,370 field plot measurements,covering the four major forest types of China(coniferous forest,sub-tropical broadleaf forest,coniferous and broadleaf-leaved mixed forest,and tropical broadleaf forest),were collected together with Sentinel-2 images to evaluate the proposed approach.The results show that the most universally useful structural and spectral metrics are the average values of canopy height and spectral index rather than their maximum values.Compared with structural attributes used alone,combining structural and spectral information can improve the estimation accuracy of AGB,increasing R2 by about 10%and reducing the root mean square error by about 22%;the accuracy of the proposed approach can yield a R2 of 0.7 in different forests types.The proposed approach performs the best in coniferous forest,followed by sub-tropical broadleaf forest,coniferous and broadleaf-leaved mixed forest,and then tropical broadleaf forest.Furthermore,the simple linear regression used in the proposed method is less sensitive to sample size and outperforms statistically multivariate machine learning-based regression models such as stepwise mul-tiple regression,artificial neural networks,and Random Forest.The proposed approach may provide an alter-native solution to map large-scale forest biomass using space-borne LiDAR and optical images with high accuracy.
文献关键词:
作者姓名:
Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo
作者机构:
State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing,100093,China;University of Chinese Academy of Sciences,Beijing,100049,China;Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Nanjing Agricultural University,Nanjing,210095,China;Department of Environmental Sciences,Policy and Management,University of California,Berkeley,CA,94720-3114,USA;Division of Agriculture and Natural Resources,University of California,Berkeley,CA,94720-3114,USA;College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi,Xinjiang,830017,China;Xinjiang Lidar Applied Engineering Technology Research Center,Urumqi,Xinjiang,830002,China;Xinjiang Land and Resources Information Center,Urumqi,Xinjiang,830002,China;Institute of Remote Sensing and Geographic Information System,School of Earth and Space Sciences,Peking University,Beijing,100871,China
引用格式:
[1]Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo-.Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes)[J].森林生态系统(英文版),2022(05):617-629
A类:
Allometry
B类:
estimation,aboveground,biomass,combining,LiDAR,canopy,height,attributes,optical,spectral,indexes,Accurate,estimates,AGB,essential,global,carbon,cycle,studies,have,widely,relied,approaches,using,structural,information,canopies,extracted,from,various,remote,sensing,datasets,However,advantages,active,passive,sources,improve,accuracy,remains,challenging,Here,proposed,new,modeling,allometric,relationships,power,law,integrate,Over,km2,drone,light,detection,ranging,field,plot,measurements,covering,four,major,types,China,coniferous,sub,tropical,broadleaf,leaved,mixed,were,collected,together,Sentinel,images,evaluate,results,show,that,most,universally,useful,metrics,average,values,rather,than,their,maximum,Compared,used,alone,increasing,by,about,reducing,root,mean,square,error,yield,different,forests,best,followed,then,Furthermore,simple,linear,regression,method,less,sensitive,sample,size,outperforms,statistically,multivariate,machine,learning,models,such,stepwise,tiple,artificial,neural,networks,Random,Forest,may,provide,alter,native,solution,map,large,scale,space,borne,high
AB值:
0.520717
相似文献
Dieback intensity but not functional and taxonomic diversity indices predict forest productivity in different management conditions: Evidence from a semi-arid oak forest ecosystem
Mona KARAMI;Mehdi HEYDARI;Ali SHEYKHOLESLAMI;Majid ESHAGH NIMVARI;Reza OMIDIPOUR;YUAN Zuoqiang;Bernard PREVOSTO-Faculty of Natural Resources,Chalus Branch,Islamic Azad University,Chalus 46615/397,Iran;Department of Forestry,Chalous Branch,Islamic Azad University,Chalous 46615/397,Iran;Department of Rangeland and Watershed Management,Faculty of Natural Resources and Earth Sciences,Shahrekord University,Shahrekord 8818634141,Iran;Key Laboratory of Forest Ecology and Management,Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang 110164,China;INRAE,Aix Marseille University,UMR RECOVER,Mediterranean Ecosystems and Risks,Aix-en-Provence 13128,France
Measuring loblolly pine crowns with drone imagery through deep learning
Xiongwei Lou;Yanxiao Huang;Luming Fang;Siqi Huang;Haili Gao;Laibang Yang;Yuhui Weng;I.-K.uai Hung-School of Information Engineering,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;Key Laboratory of State Forestry and Grassland Administration On Forestry Sensing Technology and Intelligent Equipment,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;Jiyang College of Zhejiang A & F University,Zhuji 311800,Zhejiang,People's Republic of China;College of Forestry and Biotechnology,Zhejiang A & F University,Lin'an 311300,Zhejiang,People's Republic of China;College of Forestry and Agriculture,Stephen F.Austin State University,Nacogdoches,TX 75962,USA
Machine learning-based estimates of aboveground biomass of subalpine forests using Landsat 8 OLI and Sentinel-2B images in the Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau
Ke Luo;Yufeng Wei;Jie Du;Liang Liu;Xinrui Luo;Yuehong Shi;Xiangjun Pei;Ningfei Lei;Ci Song;Jingji Li;Xiaolu Tang-College of Earth Science,Chengdu University of Technology,Chengdu 610059,People's Republic of China;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,People's Republic of China;Jiuzhaigou Nature Reserve Administration,Aba Tibetan and Qiang Autonomous Prefecture,Jiuzhai 623402, People's Republic of China;College of Ecology and Environment,Chengdu University of Technology,Chengdu 610059,People's Republic of China;State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution,Chengdu Univer-Sity of Technology,Chengdu 610059, People's Republic of China;China Railway,Eryuan Engineering Group Co.Ltd, Chengdu 610031,People's Republic of China
Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing
Qing Li;Shichao Jin;Jingrong Zang;Xiao Wang;Zhuangzhuang Sun;Ziyu Li;Shan Xu;Qin Ma;Yanjun Su;Qinghua Guo;Dong Jiang-Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Regional Technique Innovation Center for Wheat Production,Ministry of Agriculture,Key Laboratory of Crop Physiology and Ecology in Southern China,Ministry of Agriculture,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Jiangsu Key Laboratory for Information Agriculture,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China;Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology,International Institute for Earth System Sciences,Nanjing University,Nanjing 210023,Jiangsu,China;Department of Forestry,Mississippi State University,Mississippi State,MS 39759,USA;State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China;Department of Ecology,College of Environmental Sciences,and Key Laboratory of Earth Surface Processes of the Ministry of Education,Peking University,Beijing 100871,China
Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery
Guomin Shao;Wenting Han;Huihui Zhang;Yi Wang;Liyuan Zhang;Yaxiao Niu;Yu Zhang;Pei Cao-College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling 712100,Shaanxi,China;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture,Yangling 712100,Shaanxi,China;Institute of Water-Saving Agriculture in Arid Areas of China,Northwest A&F University,Yangling 712100,Shaanxi,China;Water Management and Systems Research Unit,USDA-ARS,2150 Centre Avenue,Bldg.D.,Fort Collins,CO 80526,USA;College of Information,Xi'an University of Finance and Economics,Xi'an 710100,Shaanxi,China;Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,Shaanxi,China;University of Chinese Academy of Sciences,Beijing 100049,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。