首站-论文投稿智能助手
典型文献
Using mixed integer programming and airborne laser scanning to generate forest management units
文献摘要:
Airborne laser scanning (ALS) has been widely applied to estimate tree and forest attributes,but it can also drive the segmentation of forest areas.Clustering algorithms are the dominant technique in segmentation but spatial opti-mization using exact methods remains untested.This study presents a novel approach to segmentation based on mixed integer programming to create forest management units(FMUs).This investigation focuses on using raster infor-mation derived from ALS surveys.Two mainstream cluster-ing algorithms were compared to the new MIP formula that simultaneously accounts for area and adjacency restrictions,FMUs size and homogeneity in terms of vegetation height.The optimal problem solution was found when using less than 150 cells,showing the problem formulation is solv-able.The results for MIP were better than for the clustering algorithms;FMUs were more compact based on the intra-variation of canopy height and the variability in size was lower.The MIP model allows the user to strictly control the size of FMUs,which is not possible in heuristic optimiza-tion and in the clustering algorithms tested.The definition of forest management units based on remote sensing data is an important operation and our study pioneers the use of MIP ALS-based optimal segmentation.
文献关键词:
作者姓名:
Adrián Pascual;Sándor F.Tóth
作者机构:
Forest Research Centre,School of Agriculture,University of Lisbon,Tapada da Ajuda,1349-017 Lisboa,Portugal;School of Forest Sciences,University of Eastern Finland,P.O.Box 111,80101 Joensuu,Finland;School of Environmental and Forest Sciences,University of Washington,Seattle,WA,USA
引用格式:
[1]Adrián Pascual;Sándor F.Tóth-.Using mixed integer programming and airborne laser scanning to generate forest management units)[J].林业研究(英文版),2022(01):217-226
A类:
FMUs
B类:
Using,mixed,integer,programming,airborne,laser,scanning,generate,forest,management,units,Airborne,ALS,has,been,widely,applied,estimate,tree,attributes,also,drive,segmentation,areas,Clustering,algorithms,dominant,technique,spatial,mization,using,exact,methods,remains,untested,This,study,presents,novel,approach,create,investigation,focuses,raster,infor,mation,derived,from,surveys,Two,mainstream,were,compared,new,MIP,that,simultaneously,accounts,adjacency,restrictions,size,homogeneity,terms,vegetation,height,optimal,problem,solution,was,found,when,less,than,cells,showing,formulation,solv,able,results,better,clustering,more,compact,intra,variation,canopy,variability,lower,model,allows,user,strictly,control,which,not,possible,heuristic,optimiza,definition,remote,sensing,data,important,operation,our,pioneers
AB值:
0.565838
相似文献
Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China
Huiling Tian;Jianhua Zhu;Xiao He;Xinyun Chen;Zunji Jian;Chenyu Li;Qiangxin Ou;Qi Li;Guosheng Huang;Changfu Liu;Wenfa Xiao-Ecology and Nature Conservation Institute,Chinese Academy of Forestry,Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration,Beijing,100091,China;Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing,210037,China;Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Key Laboratory of Forest Management and Growth Modeling,National Forestry and Grassland Administration,Beijing 100091,China;School of Forestry and Landscape Architecture,Anhui Agricultural University,Hefei,230036,Anhui,China;Academy of Forest Inventory and Planning National Forestry and Grassland Administration,Beijing,100714,China
Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo-State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing,100093,China;University of Chinese Academy of Sciences,Beijing,100049,China;Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Nanjing Agricultural University,Nanjing,210095,China;Department of Environmental Sciences,Policy and Management,University of California,Berkeley,CA,94720-3114,USA;Division of Agriculture and Natural Resources,University of California,Berkeley,CA,94720-3114,USA;College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi,Xinjiang,830017,China;Xinjiang Lidar Applied Engineering Technology Research Center,Urumqi,Xinjiang,830002,China;Xinjiang Land and Resources Information Center,Urumqi,Xinjiang,830002,China;Institute of Remote Sensing and Geographic Information System,School of Earth and Space Sciences,Peking University,Beijing,100871,China
Modelling fuel loads of understorey vegetation and forest floor components in pine stands in NW Spain
José A.Vega;Stéfano Arellano-Pérez;Juan Gabriel álvarez-González;Cristina Fernández;Enrique Jiménez;Pedro Cui?as;José María Fernández-Alonso;Daniel J.Vega-Nieva;Fernando Castedo-Dorado;Cecilia Alonso-Rego;Teresa Fontúrbel;Ana Daría Ruiz-González-Centro de Investigación Forestal de Lourizán,PO Box 127,36080,Pontevedra,Spain;Unidad de Gestión Ambiental y Forestal Sostenible(UXAFORES),Departamento de Ingeniería Agroforestal,Escuela Politécnica Superior de Ingeniería,Universidad de Santiago de Compostela,Campus Universitario s/n,27002,Lugo,Spain;Facultad de Ciencias Forestales,Universidad Juarez del Estado de Durango,Río Papaloapan y Blvd.Durango s/n,Col.Valle del Sur,34120,Durango,Mexico;Departamento de Ingeniería y Ciencias Agrarias,Universidad de León,Campus de Ponferrada,24401,Ponferrada,Spain
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。