首站-论文投稿智能助手
典型文献
Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm
文献摘要:
Modelling tree height-diameter relationships in complex tropical rain forest ecosystems remains a challenge because of characteristics of multi-species, multi-layers, and indeterminate age composition. Effective modelling of such complex systems required innovative techniques to improve prediction of tree heights for use for aboveground biomass estimations. Therefore, in this study, deep learning algo-rithm (DLA) models based on artificial intelligence were trained for predicting tree heights in a tropical rain forest of Nigeria. The data consisted of 1736 individual trees repre-senting 116 species, and measured from 520.25 ha sample plots. A K-means clustering was used to classify the species into three groups based on height-diameter ratios. The DLA models were trained for each species-group in which diam-eter at beast height, quadratic mean diameter and number of trees per ha were used as input variables. Predictions by the DLA models were compared with those developed by nonlinear least squares (NLS) and nonlinear mixed-effects (NLME) using different evaluation statistics and equivalence test. In addition, the predicted heights by the models were used to estimate aboveground biomass. The results showed that the DLA models with 100 neurons in 6 hidden layers, 100 neurons in 9 hidden layers and 100 neurons in 7 hidden layers for groups 1, 2, and 3, respectively, outperformed the NLS and NLME models. The root mean square error for the DLA models ranged from 1.939 to 3.887 m. The results also showed that using height predicted by the DLA models for aboveground biomass estimation brought about more than 30% reduction in error relative to NLS and NLME. Conse-quently, minimal errors were created in aboveground bio-mass estimation compared to those of the classical methods.
文献关键词:
作者姓名:
Friday Nwabueze Ogana;Ilker Ercanli
作者机构:
Department of Social and Environmental Forestry,Faculty of Renewable Natural Resources,University of Ibadan,IbadanOyo 200284,Nigeria;Department of Forest Engineering,Faculty of Forestry,?ankiri Karatekin University,?ankiri 18200,Turkey
引用格式:
[1]Friday Nwabueze Ogana;Ilker Ercanli-.Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm)[J].林业研究(英文版),2022(03):883-898
A类:
NLME
B类:
Modelling,diameter,relationships,complex,tropical,forest,ecosystems,using,deep,learning,algorithm,remains,challenge,because,characteristics,multi,species,layers,indeterminate,age,composition,Effective,modelling,such,required,innovative,techniques,improve,prediction,heights,aboveground,biomass,estimations,Therefore,this,study,DLA,models,artificial,intelligence,were,trained,predicting,Nigeria,data,consisted,individual,trees,repre,senting,measured,from,sample,plots,means,clustering,was,used,classify,into,three,groups,ratios,each,which,beast,quadratic,number,input,variables,Predictions,by,compared,those,developed,nonlinear,least,squares,NLS,mixed,effects,different,evaluation,statistics,equivalence,test,In,addition,predicted,estimate,results,showed,that,neurons,hidden,respectively,outperformed,root,ranged,also,brought,about,more,than,reduction,relative,Conse,quently,minimal,errors,created,classical,methods
AB值:
0.453327
相似文献
Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics
N.Mesa-Sierra;J.Laborde;R.Chaplin-Kramer;F.Escobar-Instituto Tecnológico y de Estudios Superiores de Occidente,Centro Interdisciplinario para la Formación y Vinculación Social,Periférico Sur Manuel Gómez Morín 8585,45604,Tlaquepaque,Jalisco,Mexico;Gnosis-Naturaleza con ciencia,A.C.,Lorenzo Barcelata 5101,45239,Guadalajara,Jalisco,Mexico;Instituto de Ecología,A.C.,Ecología Funcional,Carretera Antigua a Coatepec 351,El Haya,91073,Xalapa,Veracruz,Mexico;Natural Capital Project,Woods Institute for the Environment,Stanford University,327 Campus Drive,Stanford,CA,94305,USA;Institute on the Environment,University of Minnesota,1954 Buford Ave,St Paul,Minnesota,55108,USA;Instituto de Ecología,A.C.,Ecoetología,Carretera Antigua a Coatepec 351,El Haya,91073,Xalapa,Veracruz,Mexico
Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo-State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing,100093,China;University of Chinese Academy of Sciences,Beijing,100049,China;Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Nanjing Agricultural University,Nanjing,210095,China;Department of Environmental Sciences,Policy and Management,University of California,Berkeley,CA,94720-3114,USA;Division of Agriculture and Natural Resources,University of California,Berkeley,CA,94720-3114,USA;College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi,Xinjiang,830017,China;Xinjiang Lidar Applied Engineering Technology Research Center,Urumqi,Xinjiang,830002,China;Xinjiang Land and Resources Information Center,Urumqi,Xinjiang,830002,China;Institute of Remote Sensing and Geographic Information System,School of Earth and Space Sciences,Peking University,Beijing,100871,China
Six forests in one:Tree species diversity in the Bosque Protector Chongón Colonche,a lowland mountain range in coastal Ecuadorian
Oswaldo Jadán;David A.Donoso;Edwin Ponce-Ramírez;Franz Pucha-Cofrep;Omar Cabrera-Facultad de Ciencias Agropecuarias,Universidad de Cuenca,12 de Octubre y Diego de Tapia,Cuenca,010107,Ecuador;Programa de Doctorado en Conservación de Recursos Naturales,Escuela Internacional de Doctorado,Universidad Rey Juan Carlos,Móstoles,Madrid,ES-28933,Spain;Departamento de Biología,Escuela Politécnica Nacional,Ladrón de Guevara E11.253,Quito,170525,Ecuador;Geoforest S.A,12 de febrero y Av.Franklin Vega,Macas,140150,Ecuador;Grupo de Investigación Hidrología y Climatología,Universidad Técnica Particular de Loja,San Cayetano Alto S/N,Loja,110101,Ecuador;Brandenburg University of Technology(BTU)Cottbus-Senftenberg 03044,Cottbus,Germany;Departamento de Ciencias Biológicas y Agropecuarias,Universidad Técnica Particular de Loja,San Cayetano Alto S/N,Loja,110101,Ecuador
Modelling fuel loads of understorey vegetation and forest floor components in pine stands in NW Spain
José A.Vega;Stéfano Arellano-Pérez;Juan Gabriel álvarez-González;Cristina Fernández;Enrique Jiménez;Pedro Cui?as;José María Fernández-Alonso;Daniel J.Vega-Nieva;Fernando Castedo-Dorado;Cecilia Alonso-Rego;Teresa Fontúrbel;Ana Daría Ruiz-González-Centro de Investigación Forestal de Lourizán,PO Box 127,36080,Pontevedra,Spain;Unidad de Gestión Ambiental y Forestal Sostenible(UXAFORES),Departamento de Ingeniería Agroforestal,Escuela Politécnica Superior de Ingeniería,Universidad de Santiago de Compostela,Campus Universitario s/n,27002,Lugo,Spain;Facultad de Ciencias Forestales,Universidad Juarez del Estado de Durango,Río Papaloapan y Blvd.Durango s/n,Col.Valle del Sur,34120,Durango,Mexico;Departamento de Ingeniería y Ciencias Agrarias,Universidad de León,Campus de Ponferrada,24401,Ponferrada,Spain
Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery
Guomin Shao;Wenting Han;Huihui Zhang;Yi Wang;Liyuan Zhang;Yaxiao Niu;Yu Zhang;Pei Cao-College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling 712100,Shaanxi,China;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture,Yangling 712100,Shaanxi,China;Institute of Water-Saving Agriculture in Arid Areas of China,Northwest A&F University,Yangling 712100,Shaanxi,China;Water Management and Systems Research Unit,USDA-ARS,2150 Centre Avenue,Bldg.D.,Fort Collins,CO 80526,USA;College of Information,Xi'an University of Finance and Economics,Xi'an 710100,Shaanxi,China;Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,Shaanxi,China;University of Chinese Academy of Sciences,Beijing 100049,China
Tropical tree community composition and diversity variation along a volcanic elevation gradient
Rubén MARTíNEZ-CAMILO;Manuel MARTíNEZ-MELéNDEZ;Nayely MARTíNEZ-MELéNDEZ;Derio Antonio JIMéNEZ-LóPEZ;Mauricio JOSé-RíOS-Unidad Villa Corzo,Facultad de Ingeniería,Universidad de Ciencias y Artes de Chiapas,30520 Villa Corzo,Chiapas,Mexico;Instituto de Ciencias Biológicas,Universidad de Ciencias y Artes de Chiapas,29039 Tuxtla Gutiérrez,Chiapas,Mexico;Eizia A.C.,29045 Tuxtla Gutiérrez,Chiapas,Mexico;Departamento de Conservación de la Biodiversidad,El Colegio de la Frontera Sur,29290 San Cristóbal de las Casas,Chiapas,Mexico;Orquidiario y Jardín Botánico de Comitán,Secretaría de Medio Ambiente e Historia Natural,30106 Comitán de Domínguez,Chiapas,Mexico;Instituto de Investigación en Gestión de Riesgos y Cambio Climático,Universidad de Ciencias y Artes de Chiapas,29039 Tuxtla Gutiérrez,Chiapas,Mexico
Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions
Khabat KHOSRAVI;Phuong T.T.NGO;Rahim BARZEGAR;John QUILTY;Mohammad T.AALAMI;Dieu T.BUI-Department of Watershed Management Engineering,Ferdowsi University of Mashhad,Mashhad 93 Iran;Department of Earth and Environment,Florida International University,Miami 33199 USA;Institute of Research and Development,Duy Tan University,Da Nang 550000 Vietnam;Department of Bioresource Engineering,McGill University,Ste Anne de Bellevue QC H9X Canada;Faculty of Civil Engineering,University of Tabriz,Tabriz 51 Iran;Department of Civil and Environmental Engineering,University of Waterloo,Waterloo N2L 3G1 Canada;Department of Business and IT,University of South-Eastern Norway,Notodden 3603 Norway
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。