首站-论文投稿智能助手
典型文献
Machine learning-based estimates of aboveground biomass of subalpine forests using Landsat 8 OLI and Sentinel-2B images in the Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau
文献摘要:
Accurate estimates of forest aboveground bio-mass (AGB) are critical for supporting strategies of eco-system conservation and climate change mitigation. The Jiuzhaigou National Nature Reserve, located in Eastern Tibet Plateau, has rich forest resources on steep slopes and is very sensitive to climate change but plays an important role in the regulation of regional carbon cycles. However, an estimation of AGB of subalpine forests in the Nature Reserve has not been carried out and whether a global bio-mass model is available has not been determined. To pro-vide this information, Landsat 8 OLI and Sentinel-2B data were combined to estimate subalpine forest AGB using lin-ear regression, and two machine learning approaches-ran-dom forest and extreme gradient boosting, with 54 inven-tory plots. Regardless of forest type, Observed AGB of the Reserve varied from 61.7 to 475.1 Mg ha ?1 with an average of 180.6 Mg ha ?1 . Results indicate that integrating the Land-sat 8 OLI and Sentinel-2B imagery significantly improved model efficiency regardless of modelling approaches. The results highlight a potential way to improve the prediction of forest AGB in mountainous regions. Modelled AGB indi-cated a strong spatial variability. However, the modelled bio-mass varied greatly with global biomass products, indicating that global biomass products should be evaluated in regional AGB estimates and more field observations are required, particularly for areas with complex terrain to improve model accuracy.
文献关键词:
作者姓名:
Ke Luo;Yufeng Wei;Jie Du;Liang Liu;Xinrui Luo;Yuehong Shi;Xiangjun Pei;Ningfei Lei;Ci Song;Jingji Li;Xiaolu Tang
作者机构:
College of Earth Science,Chengdu University of Technology,Chengdu 610059,People's Republic of China;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,People's Republic of China;Jiuzhaigou Nature Reserve Administration,Aba Tibetan and Qiang Autonomous Prefecture,Jiuzhai 623402, People's Republic of China;College of Ecology and Environment,Chengdu University of Technology,Chengdu 610059,People's Republic of China;State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution,Chengdu Univer-Sity of Technology,Chengdu 610059, People's Republic of China;China Railway,Eryuan Engineering Group Co.Ltd, Chengdu 610031,People's Republic of China
引用格式:
[1]Ke Luo;Yufeng Wei;Jie Du;Liang Liu;Xinrui Luo;Yuehong Shi;Xiangjun Pei;Ningfei Lei;Ci Song;Jingji Li;Xiaolu Tang-.Machine learning-based estimates of aboveground biomass of subalpine forests using Landsat 8 OLI and Sentinel-2B images in the Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau)[J].林业研究(英文版),2022(04):1329-1340
A类:
inven,Modelled
B类:
Machine,learning,estimates,aboveground,biomass,subalpine,forests,using,Landsat,OLI,Sentinel,2B,images,Jiuzhaigou,National,Nature,Reserve,Eastern,Tibet,Plateau,Accurate,AGB,critical,supporting,strategies,eco,system,conservation,climate,change,mitigation,located,has,rich,resources,steep,slopes,very,sensitive,but,plays,important,role,regulation,regional,carbon,cycles,However,estimation,not,been,carried,out,whether,global,available,determined,To,vide,this,information,data,were,combined,regression,two,machine,approaches,ran,dom,extreme,gradient,boosting,tory,plots,Regardless,type,Observed,varied,from,Mg,average,Results,indicate,that,integrating,imagery,significantly,improved,efficiency,regardless,modelling,results,highlight,potential,way,prediction,mountainous,regions,strong,spatial,variability,modelled,greatly,products,indicating,should,evaluated,more,field,observations,required,particularly,areas,complex,terrain,accuracy
AB值:
0.510409
相似文献
Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics
N.Mesa-Sierra;J.Laborde;R.Chaplin-Kramer;F.Escobar-Instituto Tecnológico y de Estudios Superiores de Occidente,Centro Interdisciplinario para la Formación y Vinculación Social,Periférico Sur Manuel Gómez Morín 8585,45604,Tlaquepaque,Jalisco,Mexico;Gnosis-Naturaleza con ciencia,A.C.,Lorenzo Barcelata 5101,45239,Guadalajara,Jalisco,Mexico;Instituto de Ecología,A.C.,Ecología Funcional,Carretera Antigua a Coatepec 351,El Haya,91073,Xalapa,Veracruz,Mexico;Natural Capital Project,Woods Institute for the Environment,Stanford University,327 Campus Drive,Stanford,CA,94305,USA;Institute on the Environment,University of Minnesota,1954 Buford Ave,St Paul,Minnesota,55108,USA;Instituto de Ecología,A.C.,Ecoetología,Carretera Antigua a Coatepec 351,El Haya,91073,Xalapa,Veracruz,Mexico
Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
Qiuli Yang;Yanjun Su;Tianyu Hu;Shichao Jin;Xiaoqiang Liu;Chunyue Niu;Zhonghua Liu;Maggi Kelly;Jianxin Wei;Qinghua Guo-State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing,100093,China;University of Chinese Academy of Sciences,Beijing,100049,China;Plant Phenomics Research Centre,Academy for Advanced Interdisciplinary Studies,Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry,Nanjing Agricultural University,Nanjing,210095,China;Department of Environmental Sciences,Policy and Management,University of California,Berkeley,CA,94720-3114,USA;Division of Agriculture and Natural Resources,University of California,Berkeley,CA,94720-3114,USA;College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi,Xinjiang,830017,China;Xinjiang Lidar Applied Engineering Technology Research Center,Urumqi,Xinjiang,830002,China;Xinjiang Land and Resources Information Center,Urumqi,Xinjiang,830002,China;Institute of Remote Sensing and Geographic Information System,School of Earth and Space Sciences,Peking University,Beijing,100871,China
Dieback intensity but not functional and taxonomic diversity indices predict forest productivity in different management conditions: Evidence from a semi-arid oak forest ecosystem
Mona KARAMI;Mehdi HEYDARI;Ali SHEYKHOLESLAMI;Majid ESHAGH NIMVARI;Reza OMIDIPOUR;YUAN Zuoqiang;Bernard PREVOSTO-Faculty of Natural Resources,Chalus Branch,Islamic Azad University,Chalus 46615/397,Iran;Department of Forestry,Chalous Branch,Islamic Azad University,Chalous 46615/397,Iran;Department of Rangeland and Watershed Management,Faculty of Natural Resources and Earth Sciences,Shahrekord University,Shahrekord 8818634141,Iran;Key Laboratory of Forest Ecology and Management,Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang 110164,China;INRAE,Aix Marseille University,UMR RECOVER,Mediterranean Ecosystems and Risks,Aix-en-Provence 13128,France
Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery
Guomin Shao;Wenting Han;Huihui Zhang;Yi Wang;Liyuan Zhang;Yaxiao Niu;Yu Zhang;Pei Cao-College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling 712100,Shaanxi,China;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture,Yangling 712100,Shaanxi,China;Institute of Water-Saving Agriculture in Arid Areas of China,Northwest A&F University,Yangling 712100,Shaanxi,China;Water Management and Systems Research Unit,USDA-ARS,2150 Centre Avenue,Bldg.D.,Fort Collins,CO 80526,USA;College of Information,Xi'an University of Finance and Economics,Xi'an 710100,Shaanxi,China;Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,Shaanxi,China;University of Chinese Academy of Sciences,Beijing 100049,China
Mountain highway stability threading on the fragile terrain of upper Ganga catchment(Uttarakhand Himalaya),India
S.P.SATI;Shubhra SHARMA;Girish Ch.KOTHYARI;Maria ASIM;Y.P.SUNDRIYAL;Kapil MALIK;Ayush JOSHI;Harsh DOBHAL;Naresh RANA;Navin JUYAL-Department of Basic and Social Science(CoF),VCSGU University of Horticulture&Forestry Bharsar,Pauri Garhwal 246123,India;Geosciences Division,Physical Research Laboratory,Ahmedabad 380005,India;Department of Geography,Institute of Science,Banaras Hindu University,Varanasi 221005,India;Department of Petroleum Engineering&Earth Sciences,University of Petroleum and Energy Studies,Dehradun 248007,India;Department of Geology,HNB Gharwal University,Srinagar 246174,India;Institute of Seismological Research,Gandhinagar 382009,India;School of Media and Communication Studies,Doon University,Dehradun 248001,India;Department of Geology,University of Delhi,Delhi-110007,India;Kabir Enclave,Bopal,Ahmedabad 380058,India
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。