首站-论文投稿智能助手
典型文献
Distribution prediction of moisture content of dead fuel on the forest floor of Maoershan national forest, China using a LoRa wireless network
文献摘要:
The moisture content of dead forest fuel is an important indicator of risk levels of forest fires and predic-tion of fire spread. Moisture distribution is important to determine wild fire rating. However, it is often difficult to predict moisture distribution because of a complex terrain, changeable environments and low cover of commercial com-munication signals inside the forest. This study proposes a moisture content prediction system composed of environ-mental data collected using a long range radio frequency band 433 MHz wireless sensor network and data processing for moisture prediction based on a BP (back-propagation) neural network. In the fall of 2019, twenty nodes for the collection of environmental data were placed in four forest stands of Maoershan National Forest for a month; 7440 sets of data including temperature, humidity, wind speed and air pressure were obtained. Half the data were used as a training set, the other as a testing set for a BP neural network. The results show that the average absolute error between the pre-dicted value and the real value of moisture content of fuels of Larix gmelini, Betula platyphylla, Juglans mandshurica, and Quercus mongolica stands was 0.94%, 0.21%, 0.86%, 0.97%, respectively. The prediction accuracy was relatively high. The proposed distributed moisture content prediction method has the advantages of wide coverage and good real-time performance; at the same time, it is not limited by com-mercial signals and so it is especially suitable for forest fire prediction in remote mountainous areas.
文献关键词:
作者姓名:
Bo Peng;Jiawei Zhang;Jian Xing;Jiuqing Liu
作者机构:
Northeast Forestry University,Harbin 150040,People's Republic of China
引用格式:
[1]Bo Peng;Jiawei Zhang;Jian Xing;Jiuqing Liu-.Distribution prediction of moisture content of dead fuel on the forest floor of Maoershan national forest, China using a LoRa wireless network)[J].林业研究(英文版),2022(03):899-909
A类:
Maoershan,gmelini
B类:
Distribution,prediction,moisture,content,dead,forest,floor,national,China,using,LoRa,wireless,network,important,indicator,risk,levels,fires,spread,Moisture,distribution,determine,wild,rating,However,often,difficult,because,complex,terrain,changeable,environments,low,commercial,munication,signals,inside,This,study,proposes,system,composed,data,collected,long,range,radio,frequency,band,MHz,sensor,processing,back,propagation,neural,In,fall,twenty,nodes,collection,environmental,were,placed,four,stands,National,Forest,month,sets,including,temperature,humidity,wind,speed,air,pressure,obtained,Half,used,training,other,testing,results,show,that,average,absolute,error,between,dicted,value,real,fuels,Larix,Betula,platyphylla,Juglans,mandshurica,Quercus,mongolica,was,respectively,accuracy,relatively,high,proposed,distributed,method,has,advantages,wide,coverage,good,performance,same,not,limited,by,especially,suitable,remote,mountainous,areas
AB值:
0.556786
相似文献
Modelling fuel loads of understorey vegetation and forest floor components in pine stands in NW Spain
José A.Vega;Stéfano Arellano-Pérez;Juan Gabriel álvarez-González;Cristina Fernández;Enrique Jiménez;Pedro Cui?as;José María Fernández-Alonso;Daniel J.Vega-Nieva;Fernando Castedo-Dorado;Cecilia Alonso-Rego;Teresa Fontúrbel;Ana Daría Ruiz-González-Centro de Investigación Forestal de Lourizán,PO Box 127,36080,Pontevedra,Spain;Unidad de Gestión Ambiental y Forestal Sostenible(UXAFORES),Departamento de Ingeniería Agroforestal,Escuela Politécnica Superior de Ingeniería,Universidad de Santiago de Compostela,Campus Universitario s/n,27002,Lugo,Spain;Facultad de Ciencias Forestales,Universidad Juarez del Estado de Durango,Río Papaloapan y Blvd.Durango s/n,Col.Valle del Sur,34120,Durango,Mexico;Departamento de Ingeniería y Ciencias Agrarias,Universidad de León,Campus de Ponferrada,24401,Ponferrada,Spain
Multichannel imaging for monitoring chemical composition and germination capacity of cowpea(Vigna unguiculata)seeds during development and maturation
Gamal ElMasry;Nasser Mandour;Yahya Ejeez;Didier Demilly;Salim Al-Rejaie;Jerome Verdier;Etienne Belin;David Rousseau-Agricultural Engineering Department,Faculty of Agriculture,Suez Canal University,Ismailia,Egypt;Department of Pharmacology&Toxicology,College of Pharmacy,King Saud University,Saudi Arabia;Groupe d'étude et de Contr?le des Variétés et des Semences(GEVES),Station Nationale d'Essais de Semences(SNES),Beaucouzé 49071,Angers,France;Laboratoire Angevin de Recherche en Ingénierie des Systèmes(LARIS),Université d'Angers,Angers,France;Institut National de la Recherche Agronomique(INRA),UMR1345 Institut de Recherche en Horticulture et Semences,Beaucouzé F-49071,Angers,France
Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions
Khabat KHOSRAVI;Phuong T.T.NGO;Rahim BARZEGAR;John QUILTY;Mohammad T.AALAMI;Dieu T.BUI-Department of Watershed Management Engineering,Ferdowsi University of Mashhad,Mashhad 93 Iran;Department of Earth and Environment,Florida International University,Miami 33199 USA;Institute of Research and Development,Duy Tan University,Da Nang 550000 Vietnam;Department of Bioresource Engineering,McGill University,Ste Anne de Bellevue QC H9X Canada;Faculty of Civil Engineering,University of Tabriz,Tabriz 51 Iran;Department of Civil and Environmental Engineering,University of Waterloo,Waterloo N2L 3G1 Canada;Department of Business and IT,University of South-Eastern Norway,Notodden 3603 Norway
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。