首站-论文投稿智能助手
典型文献
Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability
文献摘要:
Selector devices are indispensable components of large-scale memristor array systems.The thereinto,ovonic threshold switching(OTS)selector is one of the most suitable candidates for selector devices,owing to its high selectivity and scalability.However,OTS selectors suffer from poor endurance and stability which are persistent tricky problems for applica-tion.Here,we report on a multilayer OTS selector based on simple GeSe and doped-GeSe.The experimental results show im-proving selector performed extraordinary endurance up to 1010 and the fluctuation of threshold voltage is 2.5%.The reason for the improvement may lie in more interface states which strengthen the interaction among individual layers.These develop-ments pave the way towards tuning a new class of OTS materials engineering,ensuring improvement of electrical perform-ance.
文献关键词:
作者姓名:
Shiqing Zhang;Bing Song;Shujing Jia;Rongrong Cao;Sen Liu;Hui Xu;Qingjiang Li
作者机构:
College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China;Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
引用格式:
[1]Shiqing Zhang;Bing Song;Shujing Jia;Rongrong Cao;Sen Liu;Hui Xu;Qingjiang Li-.Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability)[J].半导体学报(英文版),2022(10):79-84
A类:
Selector,thereinto,ovonic,selectors
B类:
Multilayer,doped,GeSe,OTS,improved,endurance,threshold,voltage,stability,devices,are,indispensable,components,large,scale,memristor,array,systems,switching,most,suitable,candidates,owing,its,high,selectivity,scalability,However,suffer,from,poor,which,persistent,tricky,problems,applica,Here,report,multilayer,simple,experimental,results,show,proving,performed,extraordinary,up,fluctuation,reason,improvement,may,lie,more,interface,states,strengthen,interaction,among,individual,layers,These,develop,ments,pave,way,towards,tuning,new,class,materials,engineering,ensuring,electrical
AB值:
0.565972
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators
Jingyuan Shan;Sunmiao Fang;Wendong Wang;Wen Zhao;Rui Zhang;Bingzhi Liu;Li Lin;Bei Jiang;Haina Ci;Ruojuan Liu;Wen Wang;Xiaoqin Yang;Wenyue Guo;Mark H.Rümmeli;Wanlin Guo;Jingyu Sun;Zhongfan Liu-Center for Nanochemistry(CNC),Beijing Science and Engineering Center for Nanocarbons,Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China;Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China;Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education,State Key Laboratory of Mechanics and Control of Mechanical Structures,Institute of Nanoscience,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Department of Physics and Astronomy,University of Manchester,Manchester M13 9PL,UK;Schoool of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China;College of Energy,Soochow Institute for Energy and Materials Innovations(SIEMIS),Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Soochow University,Suzhou 215006,China;Beijing Graphene Institute(BGI)Beijing 100095,China;School of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China
Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface
Yi Liu;Chunmei Ouyang;Quan Xu;Xiaoqiang Su;Quanlong Yang;Jiajun Ma;Yanfeng Li;Zhen Tian;Jianqiang Gu;Liyuan Liu;Jiaguang Han;Yunlong Shi;Weili Zhang-Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China;Institute of Solid State Physics, College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China;Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia;School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA;e-mail: cmouyang@tju.edu.cn;e-mail: xiaoqiang.su@sxdtdx.edu.cn;e-mail: weili.zhang@okstate.edu
Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface
YI LIU;CHUNMEI OUYANG;QUAN XU;XIAOQIANG SU;QUANLONG YANG;JIAJUN MA;YANFENG LI;ZHEN TIAN;JIANQIANG GU;LIYUAN LIU;JIAGUANG HAN;YUNLONG SHI;WEILI ZHANG-Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering,Key Laboratory of Optoelectronic Information Technology(Ministry of Education of China),Tianjin University,Tianjin 300072,China;Institute of Solid State Physics,College of Physics and Electronic Science,Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials,Shanxi Datong University,Datong 037009,China;Nonlinear Physics Centre,Australian National University,Canberra,ACT 2601,Australia;School of Electrical and Computer Engineering,Oklahoma State University,Stillwater,Oklahoma 74078,USA
Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution
Kailang Liu;Xiang Chen;Penglai Gong;Ruohan Yu;Jinsong Wu;Liang Li;Wei Han;Sanjun Yang;Chendong Zhang;Jinghao Deng;Aoju Li;Qingfu Zhang;Fuwei Zhuge;Tianyou Zhai-State Key Laboratory of Materials Processing and Die & Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Nanostructure Research Center,Wuhan University of Technology,Wuhan 430070,China;Institutes of Physical Science and Information Technology,Anhui University,Hefei 231699,China;School of Physics and Technology,Wuhan University,Wuhan 430072,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。