典型文献
CT影像组学模型及深度学习技术预测肺腺癌EGFR突变
文献摘要:
目的:探讨基于CT图像建立的影像组学模型及深度学习模型在预测肺腺癌表皮生长因子受体(EGFR)突变中的价值.方法:回顾性分析228例经手术病理证实的肺腺癌患者的CT图像,其中EGFR突变型116例,野生型112例.由两位放射科医师各自独立在CT图像上沿肺癌病灶边缘手动逐层勾画感兴趣区(ROI)获得病灶全容积ROI后提取影像组学特征.比较两位医师提取的影像组学特征的一致性,自高年资医师提取的特征中选取组内相关系数大于0.7的影像组学特征纳入研究.分别按照70%和30%的比例将所有病灶随机划分为训练集和验证集.在训练集中利用LASSO回归方法对影像组学特征进行筛选后,分别建立影像组学评分(Radscore)、随机森林(RF)和支持向量机(SVM)三种影像组学模型.此外,将训练集图像输入ResNet深度学习网络中建立深度学习模型.在验证集中对上述4个模型进行验证,计算敏感度、特异度和ROC曲线下面积(AUC)来评价不同模型的预测效能.结果:自CT图像中共提取了306个一致性良好的影像组学特征,经筛选后获得9个最佳特征用于建立影像组学模型.在验证集中,SVM模型的AUC(0.813)高于Radscore(0.761)和RF模型(0.775),但差异无统计学意义(P=0.089和0.330);ResNet模型的AUC为0.916,高于SVM模型(0.813)、Radscore(0.761)和RF模型(0.775).ResNet模型与Radscore和RF模型间AUC的差异具有统计学意义(P=0.031和0.043),与SVM模型间AUC的差异无统计学意义(P=0.106).ResNet模型的敏感度为0.879,高于SVM模型(0.771)、Radscore(0.818)和RF模型(0.743).ResNet模型的特异度为0.914,高于SVM模型(0.758)、Radscore(0.714)和RF模型(0.727).结论:基于CT图像的影像组学模型能够较好地预测EGFR基因突变,深度学习技术可以有效提高模型的预测准确性.
文献关键词:
肺肿瘤;影像组学;深度学习;体层摄影术;X线计算机;表皮生长因子受体
中图分类号:
作者姓名:
黄栎有;徐璐;温林春;王延花;李智勇
作者机构:
223800 江苏宿迁,徐州医科大学附属宿迁医院肿瘤科;221006 江苏徐州,徐州医科大学影像学院;223800 江苏宿迁,南京鼓楼医院集团宿迁医院肿瘤科;221006 江苏徐州,徐州医科大学附属医院核医学科
文献出处:
引用格式:
[1]黄栎有;徐璐;温林春;王延花;李智勇-.CT影像组学模型及深度学习技术预测肺腺癌EGFR突变)[J].放射学实践,2022(08):971-976
A类:
B类:
深度学习技术,技术预测,EGFR,深度学习模型,表皮生长因子受体,经手,手术病理,肺腺癌患者,突变型,野生型,放射科医师,癌病,逐层,勾画,感兴趣区,ROI,得病,影像组学特征,高年资,征纳,训练集,验证集,LASSO,影像组学评分,Radscore,RF,ResNet,深度学习网络,预测效能,共提取,征用,基因突变,预测准确性,肺肿瘤,体层摄影术,线计算
AB值:
0.222893
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。