典型文献
基于双线性插值与K-means聚类算法结合的位置指纹定位改进算法
文献摘要:
为了提升可见光通信(VLC)室内环境下的定位精度,提出一种基于双线性插值与K-means聚类算法结合的位置指纹定位改进算法.该算法首先建立初始指纹,然后对待定位点所在聚类域中的指纹进行插值计算,最后将插值后的部分区域指纹作为参考指纹库存,选择一种匹配算法实现最终定位.在5 m×5 m×3 m的室内房间建立VLC系统模型,仿真分析了指纹密集度对定位精度的影响以及改进算法的定位精度对比情况.仿真结果表明:随着指纹库密集度的降低,定位精度随之提高;改进算法使用插值指纹库与比使用初始指纹库的定位精度提高了21.5%,同时大大降低了计算复杂度.
文献关键词:
室内可见光定位;发光二极管;位置指纹法;指纹库密集度;K-means聚类算法;双线性插值法
中图分类号:
作者姓名:
张蕊;张业荣
作者机构:
南京邮电大学电子与光学工程学院,南京210023
文献出处:
引用格式:
[1]张蕊;张业荣-.基于双线性插值与K-means聚类算法结合的位置指纹定位改进算法)[J].光通信技术,2022(05):45-49
A类:
指纹库密集度,位置指纹法
B类:
means,聚类算法,位置指纹定位,改进算法,可见光通信,VLC,室内环境,定位精度,待定,定位点,库存,匹配算法,算法实现,房间,系统模型,精度对比,大大降低,计算复杂度,室内可见光定位,发光二极管,双线性插值法
AB值:
0.217935
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。