首站-论文投稿智能助手
典型文献
自有知识增强下的学术全文本关系抽取研究
文献摘要:
[目的/意义]学术全文本下的关系抽取是学术全文本知识图谱构建的关键技术,所构建的学术知识图谱能够实现文献的结构化、知识化,提高研究人员检索文献、分析文献和把握科研动态的效率,以及通过图谱的认知推理,有助于隐式知识发现.[方法/过程]通过外部知识来增强关系抽取已在不少研究取得成果,但针对特定领域的关系抽取往往缺少可用的外部知识.研究发现,全文本中自有的高置信度的知识也可以用来辅助全文本关系抽取.受认知过程双系统理论(系统1为直觉认知,系统2为推理认知)启发,设计一个句子级模型来获取知识,并通过远程监督方式获取高置信度知识,然后将高置信度知识融入到全文本级深度学习模型最后分类的一层上.[结果/结论]在生物医学学术全文本数据集(CDR-revised)上,比当前最先进的模型在F1上提高11.13%.
文献关键词:
学术全文本;关系抽取;自有知识增强;知识图谱
作者姓名:
卓可秋;沈思;王东波
作者机构:
南京农业大学信息管理学院 南京210095;南京理工大学经济管理学院 南京210094
文献出处:
引用格式:
[1]卓可秋;沈思;王东波-.自有知识增强下的学术全文本关系抽取研究)[J].图书情报工作,2022(07):120-131
A类:
自有知识增强,学术全文本
B类:
关系抽取,知识图谱构建,学术知识,知识化,提高研究,认知推理,隐式,知识发现,外部知识,增强关系,特定领域,置信度,认知过程,双系统理论,直觉,句子级,远程监督,监督方式,本级,深度学习模型,文本数据,CDR,revised,最先
AB值:
0.257285
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。