首站-论文投稿智能助手
典型文献
面向连贯性强化的无真值依赖文本摘要模型
文献摘要:
自动文本摘要技术旨在凝练给定文本,以篇幅较短的摘要有效反映出原文核心内容.现阶段,生成型文本摘要技术因能够以更加灵活丰富的词汇对原文进行转述,已成为文本摘要领域的研究热点.然而,现有生成型文本摘要模型在产生摘要语句时涉及对原有词汇的重组与新词的添加,易造成摘要语句不连贯、可读性低.此外,通过传统基于已标注数据的有监督训练提升摘要语句连贯性,需投入较高的数据成本,致使实际应用受限.为此,提出了一种面向连贯性强化的无真值依赖文本摘要(生成)模型(ATS_CG).该模型在仅给定原文本的限制条件下,一方面,基于原文本的编码结果,产生语句抽取标识,刻画对原文关键信息的筛选过程,由解码器对筛选后的语句编码进行解码;另一方面,基于解码器输出的原始词汇分布,分别按"概率选择"与按"Softmax-贪婪选择"产生两类摘要文本.综合语句连贯性与语句内容两方面,构建两类摘要文本的总体收益后,利用自评判策略梯度,引导模型学习关键语句筛选以及对所筛选关键语句进行解码,生成语句连贯性高、内容质量好的摘要文本.实验表明,即便不给定任何事先标注的摘要真值,所提出模型的摘要内容指标总体上仍优于现有文本摘要方法;与此同时,ATS_CG生成的摘要文本在语句连贯性、内容重要性、信息冗余性、词汇新颖度和摘要困惑度方面亦优于现有方法.
文献关键词:
自动文本摘要;自然语言处理;强化学习;信息检索与集成
作者姓名:
陈共驰;荣欢;马廷淮
作者机构:
南京信息工程大学 人工智能学院(未来技术学院),南京 210044;南京信息工程大学 计算机学院(软件学院、网络空间安全学院),南京 210044
引用格式:
[1]陈共驰;荣欢;马廷淮-.面向连贯性强化的无真值依赖文本摘要模型)[J].计算机科学与探索,2022(03):621-636
A类:
语句连贯,信息检索与集成
B类:
连贯性,真值,自动文本摘要,篇幅,原文,型文本,转述,新词,不连贯,可读性,有监督,ATS,CG,限制条件,关键信息,选过,解码器,Softmax,贪婪,综合语,策略梯度,模型学习,关键语句,选关,成语,内容质量,即便,何事,事先,出模,内容指标,容重,信息冗余,冗余性,自然语言处理,强化学习
AB值:
0.258458
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。