首站-论文投稿智能助手
典型文献
基于实体注意力的生成式摘要算法
文献摘要:
随着信息过载问题日益严重,对新闻长文本进行自动摘要,不仅可以帮助读者实现快速精准地浏览,也能够减少撰写摘要所需要的人力物力.现有的自动文摘算法主要分为抽取式和生成式两大类,前者注重从原文抽取关键句子,后者倾向于模仿人类总结摘要的过程对原文进行理解和压缩.然而现有的算法中,面向中文长文本摘要的研究较少,并且大多数算法都聚焦于提升生成摘要的可读性而忽略了事实准确性.针对以上问题,本文提出了一种基于实体注意力的生成式摘要算法,将实体注意力与时序注意力相结合,并将实体信息引入了损失函数.经实验,所提出的模型在中文长文本数据集CLTS上取得了45.86的ROUGE-L得分,和其他模型相比能生成具有更高可读性的摘要.
文献关键词:
生成式摘要;注意力机制;文本生成;混合损失函数
作者姓名:
李萧洋;周安民
作者机构:
四川大学网络空间安全学院,成都 610065
文献出处:
引用格式:
[1]李萧洋;周安民-.基于实体注意力的生成式摘要算法)[J].现代计算机,2022(01):50-54,59
A类:
长文本摘要,CLTS
B类:
生成式摘要,信息过载,过载问题,日益严重,自动摘要,浏览,人力物力,文摘,抽取式,两大类,原文,关键句,句子,数算,可读性,了事,实体信息,文本数据,ROUGE,比能,注意力机制,文本生成,混合损失函数
AB值:
0.340016
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。