首站-论文投稿智能助手
典型文献
基于秩最小化矩阵去噪的船舶轨迹重构方法
文献摘要:
针对船舶自动识别系统(Automatic Identification System,AIS)在实际应用中存在错误数据频发、数据丢包等问题,本文提出一种基于秩最小化矩阵去噪的船舶轨迹重构方法,利用去噪实现轨迹重构,同时,实现对轨迹的去噪和缺失补全.该方法通过线性插值实现经度对齐,将轨迹数据转化为轨迹矩阵,从而补全轨迹中的缺失值.由于补全结果存在非常大的误差,因此,引入PLR(Patch-Based Low-Rank Minimization)算法去噪,消除误差.同时,为进一步提升补全效果,通过2D-VMD(Two-Dimensional Variational Mode Decomposition)算法将矩阵分解为不同频率的IMF(Intrinsic Mode Function),并分别进行PLR去噪,合并去噪结果,得到最终重构后轨迹.本文以长江武汉段水域船舶AIS轨迹为研究对象,通过实验证明该方法在不同缺失比例以及随机缺失和连续缺失两种情境下具有鲁棒性和较强的稳定性;并与HALRTC(High-Accuracy Low-Rank Tensor Completion)、TRMF(Temporal Regularized Matrix Factorization)等方法进行比较,结果表明,该方法相较于HALRTC等方法具有更高的精度,并在高损失率下表现出较好的重构效果.
文献关键词:
智能交通;船舶轨迹重构;秩最小化矩阵去噪;AIS数据;交通安全
作者姓名:
刘文;汪文博
作者机构:
武汉理工大学,航运学院,武汉430063;武汉理工大学,内河航运技术湖北省重点实验室,武汉430063
引用格式:
[1]刘文;汪文博-.基于秩最小化矩阵去噪的船舶轨迹重构方法)[J].交通运输系统工程与信息,2022(01):106-114
A类:
秩最小化矩阵去噪,船舶轨迹重构,HALRTC,TRMF
B类:
重构方法,船舶自动识别系统,Automatic,Identification,System,AIS,错误数据,数据丢包,用去,缺失补全,线性插值,经度,对齐,轨迹数据,缺失值,PLR,Patch,Based,Low,Rank,Minimization,全效,2D,VMD,Two,Dimensional,Variational,Mode,Decomposition,矩阵分解,不同频率,IMF,Intrinsic,Function,长江武汉段,水域,随机缺失,High,Accuracy,Tensor,Completion,Temporal,Regularized,Matrix,Factorization,高损,损失率,构效,智能交通,交通安全
AB值:
0.430339
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。