首站-论文投稿智能助手
典型文献
广义可加模型的拟最优样本选择方法
文献摘要:
面对海量数据,如何选取一个具有代表性的样本进行统计建模以揭示数据背后的规律、进而对经济和社会发展进行预测和判断,是统计学研究的重点.本研究以确定性抽样方法给出该问题的答案,该方法能够有效避免由传统概率抽样方法带来的损失,使得具有代表性的样本点尽量被选人抽样样本中,更加全面地反映总体情况.本研究集中在广义可加模型的最优样本抽取方法.通过比较全样本和抽样样本估计结果之间的差距,发现样本需要满足一定的正交性条件才能最大程度还原总体的统计特征.基于该正交条件,给出了一个贪婪的拟最优样本选择方法.大量的模拟数据和实际数据证实,相较于传统概率抽样方法,确定性抽样方法具有更优良的性能,该方法可以拓展到广义变系数模型,并且适用于处理经济统计和政府统计产生的大型微观数据集.
文献关键词:
大数据;确定性抽样;广义可加模型;拟最优样本
作者姓名:
秦磊;叶玲珑;谢邦昌
作者机构:
对外经济贸易大学统计学院,北京100029;厦门大学公共事务学院,福建厦门361005;台湾辅仁大学管理学院,台湾242062
文献出处:
引用格式:
[1]秦磊;叶玲珑;谢邦昌-.广义可加模型的拟最优样本选择方法)[J].统计与信息论坛,2022(10):16-24
A类:
拟最优样本,确定性抽样
B类:
广义可加模型,样本选择,选择方法,海量数据,统计建模,抽样方法,概率抽样,样本点,被选人,样样,总体情况,需要满足,正交性,统计特征,贪婪,模拟数据,实际数据,变系数模型,经济统计,政府统计,微观数据
AB值:
0.29501
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。