首站-论文投稿智能助手
典型文献
区块链赋能物联网中联合资源分配与控制的智能计算迁移研究
文献摘要:
大数据场景下,远程云服务器通常被部署用于数据处理与价值挖掘,但在面对时延敏感型或需要动态频繁交互的业务时,该种处理模式显得力不从心.作为对云计算模式的补充,雾计算因其可有效降低任务处理时延、能耗与带宽消耗而备受关注;同时,面向雾计算的计算迁移机制因其能有效缓解节点的处理负担并改善用户体验而成为领域研究焦点.在雾计算模式下,为了更好地满足计算密集型任务对时延与能耗的要求,基于区块链赋能物联网场景,本文提出了一种联合资源分配与控制的智能计算迁移方案.具体地,规划了一个在时延、能耗与资源约束下的最小化所有任务完成总成本的优化问题,其总成本构成综合考量了时延、能耗和挖掘成本,通过对通信、计算资源与迁移决策的联合优化,实现总成本的最小化.为完成任务迁移,终端以矿工的身份向雾节点挖掘(租借)计算资源,所提出的基于区块链技术的激励机制可充分调动终端和雾节点参与计算迁移的积极性并保障交易过程的安全性,设计的奖励分配规则可保证成功挖掘资源终端收获奖励的公平性.为解决上述规划的优化问题(即混合整数非线性规划问题),提出了一个联合通信、计算与控制的智能计算迁移算法,该算法融合深度确定性策略梯度算法思想,设计了基于反梯度更新的双"行动者-评论家"神经网络结构,使训练过程更加稳定并易于收敛;同时,通过对连读动作输出进行概率离散化运算,使其更加适用于混合整数非线性规划问题的求解.最后,仿真结果表明本文方案能以较快的速度收敛,且与其他三种基准方案相比,本文方案的总成本最低,例如,与其中性能最好的基于深度Q学习网络的计算迁移方案相比,总成本平均可降低15.2%.
文献关键词:
计算迁移;雾计算;区块链;深度强化学习;资源分配
作者姓名:
陈思光;王倩;张海君;王堃
作者机构:
南京邮电大学江苏省宽带无线通信和物联网重点实验室 南京 210003;北京科技大学通信工程系 北京 100083;加州大学洛杉矶分校电子与计算机工程系 洛杉矶 CA90095 美国
文献出处:
引用格式:
[1]陈思光;王倩;张海君;王堃-.区块链赋能物联网中联合资源分配与控制的智能计算迁移研究)[J].计算机学报,2022(03):472-484
A类:
B类:
区块链赋能,中联,合资,资源分配,智能计算,计算迁移,迁移研究,数据场,程云,云服务器,价值挖掘,时延,敏感型,该种,处理模式,得力,力不从心,计算模式,雾计算,任务处理,迁移机制,善用,用户体验,研究焦点,计算密集型,资源约束,任务完成,优化问题,成本构成,计算资源,联合优化,完成任务,任务迁移,矿工,雾节点,租借,基于区块链技术,充分调动,点参,交易过程,分配规则,证成,挖掘资源,获奖,公平性,混合整数非线性规划,规划问题,合通,算法融合,深度确定性策略梯度算法,法思想,行动者,评论家,神经网络结构,训练过程,连读,出进,离散化,总成本最低,学习网络,深度强化学习
AB值:
0.37777
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。