典型文献
基于点云卷积神经网络的蛋白质柔性预测
文献摘要:
目的 蛋白质的柔性运动对生物体各种反应有着重要意义,基于蛋白质的空间结构预测其柔性运动是蛋白质结构-功能关系领域的重要问题.卷积神经网络(convolutional neural network,CNN)在蛋白质结构-功能关系研究中已有成功应用.方法 本研究借鉴计算机视觉研究中PointNet方法的思想,提出了一种蛋白质柔性预测的CNN模型.在该模型中,分别使用池化操作和空间变换网络来处理蛋白质原子三维点云的排列不变性和整体旋转不变性,针对蛋白质分子大小不一的特点,将大小不等的蛋白质小批量输入网络进行训练,并使用Pearson相关系数作为评价指标.此外为提升模型性能,在CNN模型的基础上,通过最大池化和平均池化串联的方法提取体系的全局特征,增强蛋白质全局信息的提取能力.利用243个非冗余蛋白质的B因子对所提出的模型进行训练和测试.结果 基于PointNet的CNN模型和改进模型对蛋白质B因子的预测值与实验值的平均Pearson相关系数分别为0.64、0.65,优于广泛应用的高斯网络模型(Gaussian network model,GNM).尤其,对于天然无序蛋白质柔性的预测,本方法明显优于GNM.结论 本研究为蛋白质的柔性预测提供了有效的模型.
文献关键词:
蛋白质柔性;PointNet;点云;池化操作;空间变换网络;小批量;B因子
中图分类号:
作者姓名:
张晓慧;谷昊晟;王知人
作者机构:
燕山大学理学院,秦皇岛066004
文献出处:
引用格式:
[1]张晓慧;谷昊晟;王知人-.基于点云卷积神经网络的蛋白质柔性预测)[J].生物化学与生物物理进展,2022(03):607-616
A类:
蛋白质柔性,GNM,无序蛋白质
B类:
生物体,结构预测,蛋白质结构,功能关系,convolutional,neural,network,成功应用,计算机视觉,PointNet,种蛋,池化操作,空间变换网络,三维点云,旋转不变性,分子大小,大小不一,大小不等,小批量,批量输入,入网,模型性能,最大池化,平均池化,全局特征,全局信息,非冗余,改进模型,Gaussian,model
AB值:
0.2591
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。