首站-论文投稿智能助手
典型文献
How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes?
文献摘要:
The surface of nanocrystals plays a dominant role in many of their physical and chemical properties.However,controllability and tunability of nanocrystal surfaces remain unsolved.Herein,we report that the surface chemistry of nanocrystals,such as near-infrared Ag2Se quantum dots(QDs),is size-dependent and composition-tunable.The Ag2Se QDs tend to form a stable metal complex on the surface to minimize the surface energy,and therefore the surface chemistry can be varied with particle size.Meanwhile,changes in surface inorganic composition lead to reorganization of the surface ligands,and the surface chemistry also varies with composition.Therefore,the surface chemistry of Ag2Se QDs,responsible for the photoluminescence(PL)quantum yield and photostability,can be tuned by changing their size or composition.Accordingly,we demonstrate that the PL intensity of the Ag2Se QDs can be tuned reversely by adjusting the degree of surface Ag+enrichment via light irradiation or the addition of AgNO3.This work provides insight into the control of QD surface for desired PL properties.
文献关键词:
作者姓名:
Jing-Ya Zhao;Zhi-Gang Wang;Hui Hu;Zhi-Ling Zhang;Bo Tang;Meng-Yao Luo;Ling-Ling Yang;Baoshan Wang;Dai-Wen Pang
作者机构:
College of Chemistry and Molecular Sciences,State Key Laboratory of Virology,and Wuhan Institute of Biotechnology,Wuhan University,Wuhan 430072,China;State Key Laboratory of Medicinal Chemical Biology,Tianjin Key Laboratory of Biosensing and Molecular Recognition,Research Center for Analytical Sciences,and College of Chemistry,Nankai University,Tianjin 300071,China
引用格式:
[1]Jing-Ya Zhao;Zhi-Gang Wang;Hui Hu;Zhi-Ling Zhang;Bo Tang;Meng-Yao Luo;Ling-Ling Yang;Baoshan Wang;Dai-Wen Pang-.How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes?)[J].科学通报(英文版),2022(06):619-625
A类:
Ag+enrichment
B类:
different,surfaces,semiconductor,Ag2Se,quantum,dots,various,sizes,nanocrystals,plays,dominant,role,many,their,physical,chemical,properties,However,controllability,tunability,remain,unsolved,Herein,report,that,chemistry,such,as,near,infrared,QDs,dependent,composition,tunable,tend,form,stable,metal,complex,minimize,energy,therefore,can,be,varied,particle,Meanwhile,changes,inorganic,lead,reorganization,ligands,also,varies,Therefore,responsible,photoluminescence,PL,yield,photostability,tuned,by,changing,Accordingly,demonstrate,intensity,reversely,adjusting,degree,via,light,irradiation,addition,AgNO3,This,work,provides,insight,into,desired
AB值:
0.525488
相似文献
Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity
Meifeng Wang;Yiru Qin;Wei Shao;ZhiWang Cai;Xiaoyu Zhao;Yongjun Hu;Tao Zhang;Sheng Li;Mark T.Swihart;Yang Liu;Wei Wei-MOE&Guangdong Provincial Key Laboratory of Laser Life Science,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes,College of Biophotonics,South China Normal University,Guangzhou 510631,China;Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology,Institute of Insect Science and Technology&School of Life Sciences,South China Normal University,Guangzhou 510631,China;State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China;Department of Chemical and Biological Engineering,University at Buffalo,the State University of New York,Buffalo,NY 14260,United States
Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules
Ananya Das;Evgeny V.Kundelev;Anna A.Vedernikova;Sergei A.Cherevkov;Denis V.Danilov;Aleksandra V.Koroleva;Evgeniy V.Zhizhin;Anton N.Tsypkin;Aleksandr P.Litvin;Alexander V.Baranov;Anatoly V.Fedorov;Elena V.Ushakova;Andrey L.Rogach-Center of Information Optical Technologies,ITMO University,Saint Petersburg 197101,Russia;Research Park,Saint Petersburg State University,Saint Petersburg 199034,Russia;Laboratory of Femtosecond Optics and Femtotechnology,ITMO University,Saint Petersburg 197101,Russia;Laboratory of Quantum Processes and Measurements,ITMO University,Saint Petersburg 197101,Russia;Department of Materials Science and Engineering,and Centre for Functional Photonics(CFP),City University of Hong Kong,Kowloon,Hong Kong SAR 999077,China;Shenzhen Research Institute,City University of Hong Kong,Shenzhen 518057,China
Electron-phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots
Boyang Wang;Zhihong Wei;Laizhi Sui;Jingkun Yu;Baowei Zhang;Xiaoyong Wang;Shengnan Feng;Haoqiang Song;Xue Yong;Yuxi Tian;Bai Yang;Siyu Lu-Green Catalysis Center,and College of Chemistry,Zhengzhou University,450000 Zhengzhou,China;Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering,Jiangsu Key Laboratory of Vehicle Emissions Control,Nanjing University,210023 Nanjing,China;State Key Lab of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,116023 Dalian,China;Nanochemistry Department,Istituto Italiano di Tecnologia(IIT),via Morego 30,16163 Genova,Italy;School of Physics,National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,210093 Nanjing,China;Department of Chemistry,University of Sheffield,Sheffield S3 7HF,UK;State Key Lab of Supramolecular Structure and Materials,College of Chemistry,Jilin University,130012 Changchun,China
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Surface ligand modified cesium lead bromide/silica sphere composites for low-threshold upconversion lasing
QIAN XIONG;SIHAO HUANG;ZIJUN ZHAN;JUAN DU;XIAOSHENG TANG;ZHIPING HU;ZHENGZHENG LIU;ZEYU ZHANG;WEIWEI CHEN;YUXIN LENG-State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics(SIOM),Chinese Academy of Sciences(CAS),Shanghai 201800,China;Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China;School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;School of Physics and Electronics,Shandong Normal University,Jinan 250014,China;College of Optoelectronic Engineering,Chongqing University of Post and Telecommunications,Chongqing 400065,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。