首站-论文投稿智能助手
典型文献
Polyethylene glycol derived carbon quantum dots nanofluids:An excellent lubricant for diamond-like carbon film/bearing steel contact
文献摘要:
Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nmn and had a decreasing trend with the increase of oxidation time.When used as lubricant in a diamond-like carbon film/bearing steel interface,the nanofluids achieved an ultra-low friction coefficient(μ ≈ 0.02),much lower than that of original polyethylene glycol(μ=0.12).The worn surface analyses revealed that the nanofluids could effectively inhibit the tribo-oxidation of steel counterpart that occurred under original polyethylene glycol lubrication,and hence reduced the abrasion component of friction.Especially,the poly-hydroxyl carbon dots and oxidized polyethylene glycol species in nanofluids induced a hydroxyl-rich sliding interface via their tribochemical reactions with friction surfaces,which promoted the adsorption of polyethylene glycol molecules on sliding surfaces.Along with the mild corrosion wear of steel counterface,this shifted the boundary lubrication to a mixed/film lubrication regime,thereby achieving an ultra-low friction coefficient.The above results suggest that the polyethylene glycol derived carbon quantum dots nanofluids should be a quite excellent candidate lubricant for solid-liquid synergy lubrication based on diamond-like carbon films.
文献关键词:
作者姓名:
Fu WANG;Lunlin SHANG;Guangan ZHANG;Zhaofeng WANG
作者机构:
State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
文献出处:
引用格式:
[1]Fu WANG;Lunlin SHANG;Guangan ZHANG;Zhaofeng WANG-.Polyethylene glycol derived carbon quantum dots nanofluids:An excellent lubricant for diamond-like carbon film/bearing steel contact)[J].摩擦(英文),2022(09):1393-1404
A类:
tribochemical,counterface
B类:
Polyethylene,glycol,derived,carbon,quantum,dots,nanofluids,An,excellent,lubricant,diamond,like,bearing,steel,contact,were,synthesized,via,slow,thermal,oxidation,process,was,nmn,had,decreasing,trend,increase,When,used,interface,achieved,ultra,friction,coefficient,much,lower,than,that,original,polyethylene,worn,analyses,revealed,could,effectively,inhibit,counterpart,occurred,under,lubrication,hence,reduced,abrasion,component,Especially,hydroxyl,oxidized,species,induced,rich,sliding,their,reactions,surfaces,which,promoted,adsorption,molecules,Along,mild,corrosion,wear,this,shifted,boundary,mixed,regime,thereby,achieving,above,results,suggest,should,quite,candidate,solid,liquid,synergy,films
AB值:
0.471508
相似文献
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities
Shuang Liu;Mengjie Sheng;Hao Wu;Xuetao Shi;Xiang Lu;Jinping Qu-Key Laboratory of Material Chemistry for Energy Conversion and Storage,Huazhong University of Science&Technology,Ministry of Education,Wuhan 430074,PR China;Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,Huazhong University of Science&Technology,Wuhan 430074,PR China;Hubei Key Laboratory of Material Chemistry and Service Failure,School of Chemistry and Chemical Engineering,Huazhong University of Science&Technology,Wuhan 430074,PR China;Shaanxi Key Laboratory of Macromolecular Science and Technology.School of Chemistry and Chemical Engineering,Northwestern Polytechnical University,Xi'an 710072,China;School of Materials Science and Engineering,Henan University of Science and Technology,Luoyang 471023,PR China
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
The effect of nitrogen concentration on the properties of N-DLC prepared by helicon wave plasma chemical vapor deposition
Yan YANG;Tianyuan HUANG;Maoyang LI;Yaowei YU;Jianjun HUANG;Bin YU;Xuemei WU;Peiyu JI-College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People's Republic of China;Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People's Republic of China;Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People's Republic of China;School of Physical Science and Technology,Soochow University,Suzhou 215123,People's Republic of China;Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People's Republic of China;School of Optoelectronic Science and Engineering,Soochow University,Suzhou 215123,People's Republic of China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。