首站-论文投稿智能助手
典型文献
Narrow-bandgap materials for optoelectronics applications
文献摘要:
Narrow-bandgap materials possess the intriguing optical-electric properties and unique structures,which can be widely applied in the field of photonics,energy optoelectronic sensing and biomedicine,etc.Nowadays,the researches on nonlinear optical properties of narrow-bandgap materials have at-tracted extensive attention worldwide.In this paper,we review the progress of narrow-bandgap ma-terials from many aspects,such as background,nonlinear optical properties,energy band structure,methods of preparation,and applications.These materials have obvious nonlinear optical character-istics and the interaction with the short pulse laser excitation shows the extremely strong nonlinear absorption characteristics,which leads to the optical limiting or saturable absorption related to Pauli blocking and excited state absorption.Especially,some of these novel narrow-bandgap materials have been utilized for the generation of ultrashort pulse that covers the range from the visible to mid-infrared wavelength regions.Hence,the study on these materials paves a new way for the advancement of optoelctronics devices.
文献关键词:
作者姓名:
Xiao-Hui Li;Yi-Xuan Guo;Yujie Ren;Jia-Jun Peng;Ji-Shu Liu;Cong Wang;Han Zhang
作者机构:
School of Physics & Information Technology,Shaanxi Normal University,Xi'an 710119,China;Shenzhen Key Laboratory of Two-Dimensional Materials and Devices/Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,Collaborative Innovation Center for Optoelectronic Science and Technology,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong,Shenzhen 518060,China
文献出处:
引用格式:
[1]Xiao-Hui Li;Yi-Xuan Guo;Yujie Ren;Jia-Jun Peng;Ji-Shu Liu;Cong Wang;Han Zhang-.Narrow-bandgap materials for optoelectronics applications)[J].物理学前沿,2022(01):82-114
A类:
optoelctronics
B类:
Narrow,bandgap,materials,optoelectronics,applications,possess,intriguing,optical,electric,properties,unique,structures,which,can,widely,applied,field,photonics,energy,sensing,biomedicine,etc,Nowadays,researches,nonlinear,narrow,have,tracted,extensive,attention,worldwide,In,this,paper,we,review,progress,from,many,aspects,such,background,methods,preparation,These,obvious,interaction,pulse,laser,excitation,shows,extremely,strong,absorption,characteristics,leads,limiting,saturable,related,Pauli,blocking,excited,state,Especially,some,these,novel,been,utilized,generation,ultrashort,that,covers,range,visible,mid,infrared,wavelength,regions,Hence,study,paves,new,way,advancement,devices
AB值:
0.587998
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform
Chengli Wang;Jin Li;Ailun Yi;Zhiwei Fang;Liping Zhou;Zhe Wang;Rui Niu;Yang Chen;Jiaxiang Zhang;Ya Cheng;Junqiu Liu;Chun-Hua Dong;Xin Ou-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,200050 Shanghai,China;The Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,230026 Hefei,China;CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,230026 Hefei,China;The Extreme Optoelectromechanics Laboratory(XXL),School of Physics and Electronic Science,East China Normal University,200241 Shanghai,China;State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,201800 Shanghai,China;International Quantum Academy,518048 Shenzhen,China;Hefei National Laboratory,University of Science and Technology of China,Hefei 230026,China
Development of RuS2 for near-infrared photodetector by atomic layer deposition and post-sulfurization
Tatsuya Nakazawa;Donghyun Kim;Jaehyeok Kim;Yohei Kotsugi;Taehoon Cheon;Seung-Min Chung;Soo-Hyun Kim;Hyungjun Kim-School of Electrical and Electronic Engineering,Yonsei University,Seoul 03722,Korea;Isehara Technical Center,Metallic Materials Development Department,TANAKA Kikinzoku Kogyo K.K,Isehara,Kanagawa 259-1146,Japan;Institute of Materials Technology,Yeungnam University,Gyeongsan-si 38541,Gyeongbuk,Korea;Chemical Materials Development Department,TANAKA Kikinzoku Kogyo K.K,Tsukuba Technical Center,Ibaraki 300-4247,Japan;School of Materials Science and Engineering,Yeungnam University,Gyeongsan-si 38541,Gyeongbuk,Korea;Center for Core Research Facilities,Daegu Gyeongbuk Institute of Science&Technology,Daegu 711-873,Korea
Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers
Mengxia Wang;Hailong Qiu;Tianwen Yang;Zhengping Wang;Chuanrui Zhao;Yuanan Zhao;Ting Yu;Yuyao Jiang;Meiling Chen;Yafei Lian;Ge Zhang;Hongjun Liu;Zhanggui Hu;Jianda Shao-Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China;State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;College of Science, Shanghai University, Shanghai 200444, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;e-mail: qiu@tjut.edu.cn;e-mail: yazhao@siom.ac.cn;e-mail: jdshao@siom.ac.cn
Broadband 1T-polytype tantalum disulfide saturable absorber for solid-state bulk lasers
MENGXIA WANG;HAILONG QIU;TIANWEN YANG;ZHENGPING WANG;CHUANRUI ZHAO;YUANAN ZHAO;TING YU;YUYAO JIANG;MEILING CHEN;YAFEI LIAN;GE ZHANG;HONGJUN LIU;ZHANGGUI HU;JIANDA SHAO-Laboratory of Thin Film Optics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Tianjin Key Laboratory of Functional Crystal Materials,Institute of Functional Crystal,Tianjin University of Technology,Tianjin 300384,China;State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China;Laboratory of High Power Fiber Laser Technology,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;College of Science,Shanghai University,Shanghai 200444,China;Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
Dual-metal precursors for the universal growth of non-layered 2D transition metal chalcogenides with ordered cation vacancies
Junyang Tan;Zongteng Zhang;Shengfeng Zeng;Shengnan Li;Jingwei Wang;Rongxu Zheng;Fuchen Hou;Yinping Wei;Yujie Sun;Rongjie Zhang;Shilong Zhao;Huiyu Nong;Wenjun Chen;Lin Gan;Xiaolong Zou;Yue Zhao;Junhao Lin;Bilu Liu;Hui-Ming Cheng-Shenzhen Geim Graphene Center,Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research,Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,China;Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China;School of Electronic Information Engineering,Foshan University,Foshan 528000,China;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。