典型文献
Applying the Theory of Numerical Radius of Operators to Obtain Multi-observable Quantum Uncertainty Relations
文献摘要:
Quantum uncertainty relations are mathematical inequalities that describe the lower bound of products of standard deviations of observables(i.e.,bounded or unbounded self-adjoint operators).By revealing a connection between standard deviations of quantum observables and numerical radius of operators,we establish a universal uncertainty relation for k observables,of which the formulation depends on the even or odd quality of k.This universal uncertainty relation is tight at least for the cases k=2 and k=3.For two observables,the uncertainty relation is a simpler reformulation of Schr?dinger's uncertainty principle,which is also tighter than Heisenberg's and Robertson's uncertainty relations.
文献关键词:
中图分类号:
作者姓名:
Kan HE;Jin Chuan HOU
作者机构:
College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,P.R.China;College of Information and Computer Science,Taiyuan University of Technology,Taiyuan 030024,P.R.China
文献出处:
引用格式:
[1]Kan HE;Jin Chuan HOU-.Applying the Theory of Numerical Radius of Operators to Obtain Multi-observable Quantum Uncertainty Relations)[J].数学学报(英文版),2022(07):1241-1254
A类:
Obtain,reformulation
B类:
Applying,Theory,Numerical,Radius,Operators,Multi,Quantum,Uncertainty,Relations,uncertainty,relations,are,mathematical,inequalities,that,describe,lower,products,standard,deviations,observables,unbounded,self,adjoint,operators,By,revealing,connection,between,quantum,numerical,radius,establish,universal,which,depends,even,odd,quality,This,least,cases,For,two,simpler,Schr,dinger,principle,also,tighter,than,Heisenberg,Robertson
AB值:
0.565356
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。