首站-论文投稿智能助手
典型文献
A prototype of quantum von Neumann architecture
文献摘要:
A modern computer system,based on the von Neumann architecture,is a complicated system with several interactive modular parts.It requires a thorough understanding of the physics of information storage,processing,protection,readout,etc.Quantum computing,as the most generic usage of quantum information,follows a hybrid architecture so far,namely,quantum algorithms are stored and controlled classically,and mainly the executions of them are quantum,leading to the so-called quantum processing units.Such a quantum-classical hybrid is constrained by its classical ingredients,and cannot reveal the computational power of a fully quantum computer system as conceived from the beginning of the field.Recently,the nature of quantum information has been further recognized,such as the no-programming and no-control theorems,and the unifying understandings of quantum algorithms and computing models.As a result,in this work,we propose a model of a universal quantum computer system,the quantum version of the von Neumann architecture.It uses ebits(i.e.Bell states)as elements of the quantum memory unit,and qubits as elements of the quantum control unit and processing unit.As a digital quantum system,its global configurations can be viewed as tensor-network states.Its universality is proved by the capability to execute quantum algorithms based on a program composition scheme via a universal quantum gate teleportation.It is also protected by the uncertainty principle,the fundamental law of quantum information,making it quantum-secure and distinct from the classical case.In particular,we introduce a few variants of quantum circuits,including the tailed,nested,and topological ones,to characterize the roles of quantum memory and control,which could also be of independent interest in other contexts.In all,our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems in the near future.
文献关键词:
作者姓名:
Dong-Sheng Wang
作者机构:
CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China
文献出处:
引用格式:
[1]Dong-Sheng Wang-.A prototype of quantum von Neumann architecture)[J].理论物理,2022(09):45-59
A类:
ebits
B类:
prototype,quantum,von,Neumann,architecture,modern,computer,complicated,several,interactive,modular,parts,requires,thorough,physics,information,storage,processing,protection,readout,etc,Quantum,computing,most,generic,usage,follows,hybrid,far,namely,algorithms,are,stored,controlled,classically,mainly,executions,them,leading,called,units,Such,constrained,by,ingredients,cannot,reveal,computational,power,fully,conceived,from,beginning,field,Recently,nature,has,been,further,recognized,such,programming,theorems,unifying,understandings,models,result,this,propose,version,uses,Bell,states,elements,memory,qubits,digital,global,configurations,viewed,tensor,network,Its,universality,proved,capability,execute,composition,scheme,via,gate,teleportation,also,protected,uncertainty,principle,fundamental,law,making,secure,distinct,case,In,particular,introduce,few,variants,circuits,including,tailed,nested,topological,ones,characterize,roles,which,could,independent,interest,other,contexts,our,primary,study,demonstrates,manifold,paves,way,creation,systems,near,future
AB值:
0.541669
相似文献
A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler
Tongyao Zhang;Hanwen Wang;Xiuxin Xia;Ning Yan;Xuanzhe Sha;Jinqiang Huang;Kenji Watanabe;Takashi Taniguchi;Mengjian Zhu;Lei Wang;Jiantou Gao;Xilong Liang;Chengbing Qin;Liantuan Xiao;Dongming Sun;Jing Zhang;Zheng Han;Xiaoxi Li-State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;School of Material Science and Engineering,University of Science and Technology of China,Anhui 230026,China;Research Center for Functional Materials,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;International Center for Materials Nanoarchitectonics,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China;The Key Laboratory of Science and Technology on Silicon Devices,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;The University of Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China
Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits
Ming Gong;Xiao Yuan;Shiyu Wang;Yulin Wu;Youwei Zhao;Chen Zha;Shaowei Li;Zhen Zhang;Qi Zhao;Yunchao Liu;Futian Liang;Jin Lin;Yu Xu;Hui Beng;Hao Rong;He Lu;Simon C.Benjamin;Cheng-Zhi Peng;Xiongfeng Ma;Yu-Ao Chen;Xiaobo Zhu;Jian-Wei Pan-Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China;Shanghai Branch,CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,University of Science and Technology of China,Shanghai 201315,China;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China;Center for Quantum Information,Institute for Interdisciplinary Information Sciences,Tsinghua University,Beijing 100084,China;Department of Materials,University of Oxford,Oxford OX13PH,UK
Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
Qingling Zhu;Sirui Cao;Fusheng Chen;Ming-Cheng Chen;Xiawei Chen;Tung-Hsun Chung;Hui Deng;Yajie Du;Daojin Fan;Ming Gong;Cheng Guo;Chu Guo;Shaojun Guo;Lianchen Han;Linyin Hong;He-Liang Huang;Yong-Heng Huo;Liping Li;Na Li;Shaowei Li;Yuan Li;Futian Liang;Chun Lin;Jin Lin;Haoran Qian;Dan Qiao;Hao Rong;Hong Su;Lihua Sun;Liangyuan Wang;Shiyu Wang;Dachao Wu;Yulin Wu;YU XU;Kai Yan;Weifeng Yang;Yang Yang;Yangsen Ye;Jianghan Yin;Chong Ying;Jiale Yu;Chen Zha;Cha Zhang;Haibin Zhang;Kaili Zhang;Yiming Zhang;Han Zhao;Youwei Zhao;Liang Zhou;Chao-Yang Lu;Cheng-Zhi Peng;Xiaobo Zhu;Jian-Wei Pan-Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modem Physics,University of Science and Technology of China,Hefei 230026,China;Shanghai Branch,CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Shanghai 201315,China;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China;QuantumCTek Co.,Ltd.,Hefei 230026,China;Henan Key Laboratory of Quantum Information and Cryptography,Zhengzhou 450000,China;Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。