首站-论文投稿智能助手
典型文献
Quantum uncertainty relations of Tsallis relative α entropy coherence based on MUBs
文献摘要:
In this paper,we discuss quantum uncertainty relations of Tsallis relative α entropy coherence for a single qubit system based on three mutually unbiased bases.For α ∈[1/2,1) ∪ (1,2],the upper and lower bounds of sums of coherence are obtained.However,the above results cannot be verified directly for any α ∈ (0,1/2).Hence,we only consider the special case of α =1/n+1,where n is a positive integer,and we obtain the upper and lower bounds.By comparing the upper and lower bounds,we find that the upper bound is equal to the lower bound for the special α =1/2,and the differences between the upper and the lower bounds will increase as α increases.Furthermore,we discuss the tendency of the sum of coherence,and find that it has the same tendency with respect to the different θ or φ,which is opposite to the uncertainty relations based on the Rényi entropy and Tsallis entropy.
文献关键词:
作者姓名:
Fu-Gang Zhang
作者机构:
School of Mathematics and Information Science,Nanchang Hangkong University,Nanchang 330063,China
文献出处:
引用格式:
[1]Fu-Gang Zhang-.Quantum uncertainty relations of Tsallis relative α entropy coherence based on MUBs)[J].理论物理,2022(01):31-39
A类:
MUBs
B类:
Quantum,uncertainty,relations,Tsallis,relative,entropy,coherence,In,this,paper,discuss,quantum,single,qubit,system,three,mutually,unbiased,bases,For,upper,lower,bounds,sums,are,obtained,However,above,results,cannot,verified,directly,any,Hence,only,consider,special,case,n+1,where,positive,integer,By,comparing,find,that,equal,differences,between,will,increases,Furthermore,tendency,has,same,respect,different,which,opposite,nyi
AB值:
0.469151
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。